MANUFACTURED GRIEVANCES

Germán Gieczewski

PRINCETON UNIVERSITY

Maria "Masha" Titova

VANDERBILT UNIVERSITY

Snowbird | March 2025

- ▶ Dictatorships often endure despite poor performance/economic suffering
- ▶ In some cases, it appears that regimes deliberately impose hardship on select groups
 - ♦ Stalin's Holodomor
 - ♦ Mao's Great Leap Forward
- ▶ Is this *just* incompetence, ideological extremism, or pure repression?
- ▶ THIS PAPER: manufacturing grievances is an optimal regime survival tool

manufacture grievances for select population groups

- \implies harder for citizens to know if their hardship is isolated or widespread
- \Longrightarrow harder for them to coordinate on a protest

- ▶ a new form of "divide and rule" strategy
 - ◊ pit groups against each other to maintain power (Miquel, 2007, Egorov, Guriev, and Sonin, 2009)

• uncertainty makes it harder for citizens to coordinate on protest

◊ Mesquita (2010), Shadmehr & Bernhardt (2011); Casper & Tyson (2014)

 propaganda, censorship and media control are examples of regime's optimal information manipulation policies

 ◊ Edmond (2013); Goldstein & Huang (2016), Li, Song & Zhao (2023)); Inostroza & Pavan (2023); Morris, Oyama & Takahashi (2024)

THIS PAPER: regime manipulates citizens' actual payoffs

▶ that *creates uncertainty* even if citizen's do not question regime's strength or value of revolution etc.

Model

OVERVIEW

- ▶ Players: regime (it) and $n \ge 2$ citizens
 - ♦ *this talk*: n = 3, Alice, Bob and Charlie

► Citizens care about their welfare outcomes

 $\diamond\,$ which can be low (l<0) or high (h>0)

▶ Regime manipulates welfare outcomes in order to survive

▶ Citizens play a coordination game of regime change

TIMELINE

 \blacktriangleright Nature draws a vector of initial welfare outcomes x

TIMELINE

▶ Regime commits to manipulation strategy $\sigma(x)$

 \diamond cannot manipulate $x = (l, \dots, l)$

 $\diamond y = \sigma(x)$ is prob. that (h, \ldots, h) is manipulated to y

 \blacktriangleright Nature draws a vector of initial welfare outcomes x

 $\begin{aligned} &\diamond \ x = (h, \dots, h) \ \text{w/ prob.} \ q \in (0, 1) \end{aligned} \qquad \qquad \mbox{``oil prices are high''} \\ &\diamond \ x = (l, \dots, l) \ \text{w/ prob.} \ 1 - q \end{aligned} \qquad \qquad \mbox{``oil prices are low''} \end{aligned}$

TIMELINE

• Regime commits to manipulation strategy $\sigma(x)$

 \diamond cannot manipulate $x = (l, \dots, l)$

 $\diamond y = \sigma(x)$ is prob. that (h, \ldots, h) is manipulated to y

 \blacktriangleright Nature draws a vector of initial welfare outcomes x

▶ Nature draws vector of manipulated welfare outcomes $y \sim \sigma(x)$

• Regime commits to manipulation strategy $\sigma(x)$

 \diamond cannot manipulate $x = (l, \dots, l)$

 $\phi y = \sigma(x)$ is prob. that (h, \ldots, h) is manipulated to y

 \blacktriangleright Nature draws a vector of initial welfare outcomes x

▶ Nature draws vector of manipulated welfare outcomes $y \sim \sigma(x)$

• Citizen *i* observes σ and (manipulated) y_i

♦ forms posterior belief $\mu_i(\cdot | y_i; \sigma)$ about welfare outcomes y_{-i} of others

MANUFACTURED GRIEVANCES

MANIPULATION STRATEGY: EXAMPLE 1

MANIPULATION STRATEGY: EXAMPLE 2

randomly lower Alice's or Bob's welfare outcome

▶ citizen *i* chooses between attacking $(a_i = 1)$ and abstaining $(a_i = 0)$

 \blacktriangleright regime changes/falls iff k or more citizens attack

 \diamond this talk: k = 2

 \blacktriangleright *i*'s best response is

♦ abstain if $y_i = h$

 \diamond attack if $y_i = l$ and $\Pr(\text{at least } k - 1 \text{ others attack}) \geq c/|l|$

MANUFACTURED GRIEVANCES

- \blacktriangleright regime chooses optimal σ that maximizes ex-ante probability of survival
- ▶ for each σ , citizens play most threatening BNE of $\mathcal{G}(\sigma)$
 - $\diamond\,$ BNE with the highest number of attackers

Note: citizen's strategy is her action after observing $y_i = l$

ANALYSIS

Alice attacks assuming Bob and Charlie attack (after l)

 \triangleright w/ prob 1 - q, citizens coordinate and charge regime

▶ regime survives w/ prob q (which is now a lower bound)

MANUFACTURED GRIEVANCES

- ▶ Let σ^* be
 - 1) select a targeted set T of n k + 1 citizens
 - 2) lower welfare outcomes for k-1 citizens out of T w/ prob $\frac{k-1}{n-k+1}$
 - \diamond this talk: lower welfare outcome for Alice or Bob w/ prob 1/2

- ▶ Let σ^* be
 - 1) select a targeted set T of n k + 1 citizens
 - 2) lower welfare outcomes for k-1 citizens out of T w/ prob $\frac{k-1}{n-k+1}$
 - \diamond this talk: lower welfare outcome for Alice or Bob w/ prob 1/2

Main Result:

▶ σ^* is an optimal manipulation strategy

▶ regime's ex-ante probability of survival is

1 if
$$\frac{1-q}{\max\left\{q\frac{k-1}{n-k+1},1\right\}+1-q} < \frac{c}{|l|}$$
 and q otherwise

[?] under what conditions does Alice never attack?

[?] under what conditions does Alice never attack?

[?] under what conditions does Alice never attack?

▶ regime survives w/ prob 1 if

$$\frac{1-q}{\max\left\{q\frac{k-1}{n-k+1}, 1\right\} + 1-q} < \frac{c}{|l|}$$

regime is more likely to guarantee survival if

- $\left. \begin{array}{c} \diamond \ c \ \text{increases} \\ \diamond \ |l| \ \text{decreases} \end{array} \right\} \rightarrow \text{costlier attacks}$
- $\diamond q$ increases \rightarrow event that grievances are shared is less likely

 $\diamond n$ decreases ightarrow event that grievances are isolated is more likely $\diamond k$ increases

MANUFACTURED GRIEVANCES

CONCLUSION

> manufacturing grievances is an optimal strategy of regime survival

- ◊ makes it harder for citizens to know if their hardships are isolated or widespread
- \diamond suppresses collective action

Thank You!

What if $\frac{k-1}{n-k+1} \ge 1$?

▶ then, optimal σ^* is

1. select a targeted set T of n - k + 1 citizens

(same as before)

2. lower welfare outcomes for all of them

$\blacktriangleright\,$ payoffs are

	Regime Change $(a \ge k)$	Status Quo $(a < k)$
$a_i = 1$ (<i>i</i> attacks)	-c	$y_i - c$
$a_i = 0$ (<i>i</i> abstains)	y_i	y_i

