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Abstract

We study a class of finite-action disclosure games where the sender’s prefer-

ences are state independent and the receiver’s optimal action depends only on

the expected state. While receiver-preferred equilibria in these games involve

full revelation, other equilibria are less well-understood. We show that any equi-

librium payoff can be obtained with a disclosure strategy corresponding to a

partition with a laminar structure that allows pooling nonadjacent states. In

a sender-preferred equilibrium, such a structure balances inducing more sender-

favorable actions and deterring deviations. Leveraging this insight, we identify

conditions under which the sender does not benefit from commitment power and

apply these results to study influencing voters and selling with quality disclosure.
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1 Introduction

When economists think of disclosure games, they usually think of unraveling (e.g.,

Grossman, 1981; Milgrom, 1981). Specifically, if the sender can credibly prove that the

state is highly favorable, he reveals it to induce a higher action from a receiver. Once the

most favorable states are disclosed, slightly less favorable states must also be revealed

to avoid being mistaken for worse ones, and this reasoning continues recursively until all

states are revealed. This full revelation result, however, hinges on a crucial assumption:

the receiver’s action space is sufficiently flexible, meaning that she can adjust her action

continuously so that any marginal improvement in belief leads to a strictly higher

action.

Nevertheless, this flexibility assumption often fails in settings where the receiver

chooses among finitely many actions, such as a consumer deciding among a few prod-

ucts or product versions, an employer choosing among different position levels, or a

policymaker deciding between a few policy alternatives. In such cases, the receiver

cannot finely adjust her action in response to small changes in her belief. Previous

studies (e.g., Giovannoni and Seidmann, 2007; Titova and Zhang, 2025) show that this

discreteness may prevent full unraveling and allow the sender to withhold some infor-

mation, i.e., create scope for pooling. Yet little is known about exactly which states

are pooled together in equilibrium, or about the full limits of what can be achieved

through verifiable disclosure.

In this paper, we study a disclosure game in which the receiver’s preferred action

is increasing in the expected state. The only essential difference from Milgrom (1981)

is that the receiver’s action space is finite. We characterize the equilibrium payoff set,

study the sender-preferred equilibrium payoff, and identify sufficient conditions under

which the commitment payoff is achieved with verifiable disclosure. We illustrate our

results with a motivating example.

Example. To illustrate our model and main results, consider a seller (he) promoting

a product to a buyer (she) who chooses whether to buy nothing (action 1), buy the

product (action 2), or buy the product bundled with an add-on (action 3). The play-

ers have a common prior that the product quality is uniformly distributed on [0, 1].

The buyer’s payoff depends on the posterior expectation of product quality ω and is

such that she optimally buys the bundle if E[ω] ∈ [3
4
, 1], only the standalone product

if E[ω] ∈ [1
2
, 3
4
], and nothing otherwise. The seller’s profit is 0 if he sells nothing, 1
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if he sells the product with the add-on, and p ∈ [0, 1] if he sells only the product.

To persuade the buyer, the seller can disclose a piece of hard evidence about product

quality after privately observing it. In particular, he can send a message corresponding

to any nonempty closed subset of [0, 1] containing the true quality ω. We will focus on

partitional disclosure strategies associated with some (ordered) partition {B1, B2, B3}
of [0, 1] such that when the product quality is ω ∈ Bi, the seller sends a message Bi.

The interpretation is that the seller discloses which Bi the quality belongs to and rec-

ommends the buyer to take action i. Such a partition is an equilibrium partition if

and only if it is obedient for the buyer so that she is willing to follow the recommen-

dation, and revelation-proof for the seller so that he is almost never willing to deviate

by revealing the true quality.

Before discussing the equilibria of the game, note that the seller’s equilibrium payoff

is bounded from above by his commitment payoff in this environment, that is, his

maximal expected payoff in the case when he can commit to disclose information about

ω using any experiment. The commitment problem can be seen as a relaxation of the

problem of maximizing seller’s payoff across equilibria because the former does not

require the disclosure strategy to be revelation-proof. Therefore, if the commitment

payoff is attainable in some equilibrium, this equilibrium must be a seller-preferred

equilibrium of the game.

Suppose first that p = 0. Given the observation above, we start by identifying the

commitment solution. Because p = 0, the action space is effectively binary and the

seller is maximizing the probability of selling the bundle. Every commitment-optimal

experiment corresponds to a partition given by B1 = [0, 1
2
], B2 = ∅, B3 = [1

2
, 1] so that

the buyer is indifferent between buying and not buying the bundle following message

B3. It is easy to check that this partition is revelation-proof, because almost no seller

type in B1 can induce any action higher than 1 by deviating. Therefore, there is a

seller-preferred equilibrium that attains the commitment payoff.

Suppose next that p = 0.5. In this case, there are three non-trivial actions available

to the buyer, and the seller is facing a trade-off between the likelihoods of selling the

standalone product and selling the bundle. It turns out that the unique commitment-

optimal partition is given by B1 = [0, 1
4
], B2 = [ 5

16
, 11
16
], B3 = [1

4
, 5
16
] ∪ [11

16
, 1]. Note that

in contrast to the case of p = 0, in this case the optimal partition is not monotone

in the sense that not every element is an interval. Instead, it is associated with a

class of bi-pooling distributions of posterior means which are known to be optimal in
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Figure 1. Commitment-optimal and sender-preferred equilibrium partitions in the
example. The dashed lines are the (conditional) means of the partitional elements.

a general class of linear persuasion problems (Kleiner, Moldovanu, and Strack, 2021;

Arieli, Babichenko, Smorodinsky, and Yamashita, 2023). Such bi-pooling partitions

generalize monotone partitions by allowing pooling of non-adjacent types as follows.

Each partitional element Bi can either be an interval, or consist of two intervals and

“nest” a unique another interval Bj, in the sense that co(Bi) ⊇ Bj. To verify that

this partition is revelation-proof, it is sufficient to check that almost no type in B2 can

deviate by revealing their type and convincing the buyer to buy the bundle. Indeed,

since the highest type 11
16

in B2 is below the threshold 3
4
of selling a bundle, this partition

is an equilibrium partition.

Suppose next that p = 0.6. The unique commitment-optimal partition can be shown

to be given by a bi-pooling partition B1 = [0, 1
8
], B2 = [11

64
, 53
64
], B3 = [1

8
, 11
64
] ∪ [53

64
, 1].

Compared to the previous case, the profit from selling the standalone product in-

creases and the set B2 of types selling the standalone product dilates. In particu-
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lar, there are now some types in B2 which are above the bundle threshold of 3
4
for

whom revealing their type would be a profitable deviation. Therefore, the above parti-

tion is not revelation-proof and the maximal equilibrium seller profit in the disclosure

game is strictly below the commitment benchmark. In this case, the seller-optimal

equilibrium turns out to be associated with another bi-pooling partition given by

B1 = [0, 3−
√
5

4
], B2 = [1

4
, 3
4
], B3 = [3−

√
5

4
, 1
4
] ∪ [3

4
, 1]. To get some intuition why this

is the best the seller can do in an equilibrium, note that this partition satisfies the

following constraints. First, similarly to the commitment solution, the buyer’s pos-

terior means following messages B2 and B3 equal, respectively, E[ω | ω ∈ B2] =
1
2

and E[ω|ω ∈ B3] =
3
4
, in other words the obedience constraint is binding and, as a

result, the partition is barely obedient. Second, in contrast to the commitment solu-

tion, the upper bound of B2 coincides with the threshold 3
4
, implying that the seller

revelation-proofness constraint is binding.

Our model generalizes this example to any absolutely continuous prior distribution

of the state, an ordered finite action space, and monotone preferences of the players.1

Our first main result, Theorem 1, shows that any equilibrium payoff of the sender can

be obtained in a laminar partitional equilibrium, i.e., one that is associated with a

laminar partition. The laminar property of a partition, introduced in Candogan and

Strack (2023), generalizes the bi-pooling property known to characterize optima under

sender’s commitment. In a bi-pooling partition, each element’s convex hull may nest

at most one other lower-indexed element, while in a laminar partition, it may nest

any number of lower-indexed elements. We prove this result by showing that laminar

partitions are most revelation-proof among obedient partitions in the sense that any

equilibrium partition can be transformed into a laminar equilibrium partition with the

same sender payoff.

Our next result, Theorem 2, establishes the properties of sender-preferred equi-

librium partitions. First, sender-preferred (laminar) equilibrium partitions are barely

obedient in the sense that they maximally exploit the receiver’s obedience. This fea-

ture is common with the commitment solution: if the sender’s payoff is maximized,

then the obedience constraint must be binding. Second, we provide a necessary and

sufficient condition for a barely obedient laminar partition to be revelation-proof. In

particular, we show that instead of verifying revelation proofness for all states, one can

consider a particular subset of on-path actions and then verify it for the highest state

1The players have monotone preferences if the sender’s payoff is strictly increasing in the receiver’s
action and the receiver’s preferred action is increasing in the expected state.

4



in which each of those actions is recommended.

Our remaining set of results discusses the attainability of the commitment payoff in

the disclosure game. First, every bi-pooling solution of the commitment problem pins

down a barely obedient bi-pooling (and, therefore, laminar) partition that is most re-

sistant to violations of revelation proofness (Theorem 3, Proposition 1). Consequently,

the revelation proofness of that partition determines whether the commitment payoff

can be achieved in a disclosure game. With binary actions, Titova and Zhang (2025)

show that every bi-pooling commitment solution is implementable. For three or more

actions, our Proposition 2 shows that every bi-pooling commitment solution is imple-

mentable if the sender’s utility is sufficiently convex in receiver’s action cutoffs. In

the above example with three actions, the commitment payoff is attained when p is

sufficiently low, which corresponds to the seller’s utility being sufficiently convex.

Implications. The results discussed above have several implications. In the existing

literature, pooling nonadjacent states is typically attributed to the presence of the re-

ceiver’s private information.2 The laminar structure provides an alternative rationale

for pooling nonadjacent states, suggesting it could be a more general and robust fea-

ture that does not have to depend on the interaction of multiple information sources.

Moreover, the coexistence of equilibria with distinct payoffs and simple messages may

explain the diversity of disclosure policies observed in practice. This also suggests that

focusing exclusively on the fully revealing outcomes in policy debates need not always

be appropriate, especially when there is a small number of actions. Finally, this paper

contributes to the ongoing debates over whether disclosure should be mandated. Our

results identify communication environments where the sender can gain significantly

by pooling a substantial portion of low states with high states. In such contexts, from

the receiver’s perspective, the advantages of mandatory disclosure may outweigh the

potential shortcomings of such a policy.

Applications. We apply these insights to study selling with quality disclosure and

influencing voters. In the former setting, Milgrom (1981) shows that when the buyer

can purchase any fraction of the product, unraveling takes place and every equilibrium

2This is documented in various contexts, such as signaling games (e.g., Feltovich, Harbaugh, and
To, 2002), disclosure games (e.g., Harbaugh and To, 2020), information design (e.g., Guo and Shmaya,
2019; Candogan and Strack, 2023), and in empirical studies (e.g., Bederson, Jin, Leslie, Quinn, and
Zou, 2018).
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features full revelation. If the buyer is restricted to buying integer units, however, we

show that the seller may be able to achieve the same outcome as under commitment.

In the second application, we consider an expert who discloses verifiable information

to a group of voters in an amendment voting setting; the voters choose from three al-

ternatives: the amended bill, the unamended bill, and the status quo. We demonstrate

that the expert can be hurt even if, all else equal, all voters become more inclined

toward the expert’s most preferred alternative.

Related literature. This paper belongs to a growing literature that characterizes

equilibrium payoff set in disclosure games.3 The most closely related paper is Titova

and Zhang (2025), which studies a more general disclosure game with a finite number

of receiver actions. We specialize their model by assuming the state space is the unit

interval and the receiver has monotonic preferences that depend only on the expected

state. These assumptions allow us to provide a characterization of a sender-preferred

equilibrium, identify the limits of verifiable communication, and establish sufficient con-

ditions on model primitives for the sender to achieve the commitment payoff. While we

focus on environments in which the receiver’s action set is more limited than in Gross-

man (1981) and Milgrom (1981)—our receiver chooses from a finite set of actions—Ali,

Kleiner, and Zhang (2024) study settings with greater flexibility, where full revelation

prompts an action that makes the sender no better off than inducing any other be-

liefs. Consequently, revelation proofness is not a concern. They provide conditions

under which the sets of equilibrium payoff profiles are virtually the same as the set of

achievable payoff profiles under commitment. Gieczewski and Titova (2025) consider

disclosure games with a general message mapping, propose an equilibrium selection

criterion related to neologism-proofness, and characterize the sender’s ex-ante payoff

under this criterion when there is access to sufficiently rich stochastic evidence.4

Beyond verifiable disclosure, our work also contributes to the growing recent lit-

erature on the possibility of attaining commitment payoff without full commitment

in other communication environments, for example, under cheap talk (Lipnowski and

Ravid, 2020; Lipnowski, 2020), repeated cheap talk (Best and Quigley, 2023; Kuvalekar,

Lipnowski, and Ramos, 2022; Mathevet, Pearce, and Stacchetti, 2022; Pei, 2023), infor-

3Disclosure games were introduced in Grossman and Hart (1980), Grossman (1981) and Milgrom
(1981). For surveys of this literature, see Milgrom (2008), Dranove and Jin (2010), and Ben-Porath,
Dekel, and Lipman (2025).

4“Stochastic evidence” means that the sender’s available messages depend on both the state and
chance. In our game, however, the set of available messages is determined solely by the state.
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mation design with privately (and fully) informed sender (Perez-Richet, 2014; Koessler

and Skreta, 2023; Zapechelnyuk, 2023),5 a possibility to covertly revise a message from

an experiment (Min, 2021; Lipnowski, Ravid, and Shishkin, 2022), an ability to covertly

revise an experiment without affecting the marginal distribution over messages (Lin

and Liu, 2024), costly misreporting (Guo and Shmaya, 2021; Nguyen and Tan, 2021),

and sender-worst equilibrium selection (Lipnowski, Ravid, and Shishkin, 2024). In con-

trast, we study a one-shot communication game with verifiable information and absent

any commitment.

Our paper is also closely related to Candogan and Strack (2023) which studies lin-

ear persuasion with one or more privately informed receivers. In that paper, laminar

partitions arise as a solution to a standard linear maximization problem with a mean-

preserving contraction constraint (Kleiner et al., 2021; Arieli et al., 2023), in which re-

ceivers’ incentive constraints are written as additional moment conditions. In contrast,

we show that laminar partitions are ones that are most likely to be revelation-proof;

yet, the revelation proofness constraint cannot be written as a moment condition.

2 The Model

We consider the following disclosure game between the sender (he) and the receiver

(she).6 The state space is Ω = [0, 1], and the common prior F admits a strictly positive

density f ; we let µF denote the probability measure induced by F . First, the sender

learns the state. Then, the sender communicates with the receiver using verifiable

messages. Specifically, the sender’s message space in state ω ∈ Ω is M(ω) := {m ∈ C :

ω ∈ m}, where C is the collection of all nonempty closed subsets of [0, 1]. Finally, the

receiver observes the message, forms a posterior belief, and takes an action.

The receiver’s action space is N = {1, . . . , n}, where n > 1. The receiver’s optimal

action depends only on her posterior mean, denoted by x ∈ [0, 1]. We assume that the

receiver’s preferences are monotone in the sense that action i is optimal if and only if

x ∈ [γi, γi+1] =: Ai for some cutoffs 0 = γ1 < γ2 < · · · < γn+1 = 1.7 We also assume

that the sender’s state-independent payoff ui from receiver taking action i is strictly

5One can also interpret these models as disclosure games where the sender has access to stochastic
evidence.

6We model (verifiable) disclosure the same way as in the seminal papers of Grossman and Hart
(1980), Grossman (1981), and Milgrom (1981).

7One interpretation is the the receiver wants to match the state but is constrained by the number
of available actions.
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increasing in i.8 Without loss, we normalize u1 = 0. Finally, let

v(x) =

ui if x ∈ [γi, γi+1) for some i ∈ N ∖ {n},

un if x ∈ [γn, γn+1]

denote the sender’s value function, which maps the receiver’s posterior mean to the

highest attainable sender payoff. By construction, v(x) is upper semicontinuous.

We focus on perfect Bayesian equilibria of the disclosure game. An assessment is a

triple (σ, τ, p), where σ : Ω → ∆C is the sender’s strategy, τ : C → ∆N is the receiver’s

strategy and p : C → ∆(Ω) is the receiver’s belief system.9 An assessment (σ, τ, p) is

an (perfect Bayesian) equilibrium if:

1. for every ω ∈ Ω, σ(ω) is supported on argmaxm∈M(ω)

∑
i∈N τ(i | m)ui;

2. for each m ∈ C, τ(i | m) > 0 =⇒
∫
Ω
ω dp(ω | m) ∈ Ai;

3. p is obtained from F given σ∗ using Bayes rule;

4. for every m ∈ C, supp(p(m)) ⊆ m.

In words, the first condition requires that the sender chooses verifiable messages

that maximize his expected payoff. Second, the receiver chooses an action that is

optimal given her posterior mean. Third, the receiver uses Bayes rule to to calculate

the posterior from the prior given the sender’s strategy. Finally, the receiver’s belief

system is consistent with disclosure: she deems impossible any state in which the

observed (on- or off-path) message is not verifiable.

3 Equilibrium Analysis

Partitions

We begin analysis by introducing the notion of a partition of the state space and its

key properties. A sequence B := {Bi}i∈N ⊆ C of closed subsets of [0, 1] is a (ordered)

partition if
⋃

i∈N Bi = [0, 1] and µF (Bi ∩Bj) = 0 for all i, j ∈ N . Note first that our

partition is an ordered sequence, rather than a collection of sets. This is convenient

because the receiver’s action set is ordered. Second, the partition elements are closed

8We use “increasing,” “smaller,” and “greater” in the weak sense: “strictly” will be added whenever
needed.

9For a compact metric space Y , let ∆Y denote the set of all probability measures on the Borel
subsets of Y . Endowing C with the Hausdorff distance, it is a compact metric space.
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sets that may have a non-empty intersection which, however, must have zero measure.

Partitions are useful in describing certain types of on-path behavior. We say that

an assessment (σ, τ, p) and a partition B are associated if for each i ∈ N :

(a) σ(Bi | ω) = 1(ω ∈ Bi and ω /∈ Bi+1 ∪ . . . ∪Bn);

(b) τ(i | Bi) = 1;

(c) p(· | Bi) = µF (· | Bi).

In an assessment associated with a partition B, the sender’s strategy is to reveal which

element of the partition the state belongs to by sending message Bi when ω ∈ Bi.
10

Such a message can be interpreted as a recommendation for the receiver to choose action

i. Then, the receiver’s strategy is to always follow the recommendation. Finally, the

receiver’s posteriors on the path are calculated using Bayes rule. Note that a partition

uniquely defines the on-path behavior of the players: if a partition is associated with

multiple assessments, all of these assessments differ in receiver’s off-path beliefs and

actions only. If an assessment (σ, τ, p) associated with a partition B is an equilibrium,

then we call (σ, τ, p) a partitional equilibrium (PE) and B an equilibrium partition.

The following two properties are necessary and sufficient for B to be an equilibrium

partition:11

Definition 1. A partition B is

• obedient if E[ω | ω ∈ Bi] ∈ Ai for each i ∈ N .

• revelation-proof if ω ∈ Bi implies ω ∈ A1 ∪ . . . ∪ Ai = [0, γi+1] for each i ∈ N .

In words, obedience requires that the receiver indeed prefers to take action i when

she learns that ω ∈ Bi, i.e., after message Bi. Revelation proofness, roughly speaking,

ensures that the sender does not have profitable deviations toward fully revealing the

state. Indeed, in the disclosure game, the sender has an option to fully reveal the state

by sending message {ω} with probability one, thus convincing the receiver to take the

action that she would take knowing ω. Thus, if ω ∈ Bi, i.e., the partition prescribes

that the receiver takes action i when the realized state is ω, then the receiver prefers

to take at most action i when fully informed.

Next, we define the following structural property of partitions. Let cl(·) and co(·)
denote the closure and the convex hull, respectively.

10We assume that if ω is in multiple partition elements, then the sender sends the highest one.
11This result was first shown in Titova and Zhang (2025) for a disclosure game with a slightly

different message space. We formulate and prove this result for our disclosure game in Lemma 1 in
the appendix.
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Definition 2. A partition B is laminar if for each i ∈ N

Bi = cl

(
co (Bi)

∖ ⋃
j<i

co (Bj)

)
. (1)

If an equilibrium is associated with a laminar partition B, we call this equilibrium a

laminar PE.

The intuitive interpretation of the laminar property is that each element Bi either

has no “gaps” and is therefore an interval, or it has “gaps” that belong to lower-indexed

partitional elements B1, . . . , Bi−1 only. This implies that for each pair Bi and Bj with

i > j, the convex hull co(Bi) either nests or has a null intersection with co(Bj).
12

When co(Bi) ⊃ co(Bj), we say that action i nests action j. We illustrate this intuition

in Figure 2.

The following observation is a direct consequence of the definition of a laminar

partition.

Observation 1. If B is a laminar partition, then each Bi is either an empty set or a

union of at most i intervals.

0 1

B4

B3

B2

B1

(a) Only B4 has gaps but they belong to
the lower-indexed B2 and B3.

0 1

B4

B3

B2

B1

(b) B3 has a gap that belongs to the
higher-indexed B4.

Figure 2. A laminar partition in panel (a) and a non-laminar partition in panel (b).

One prominent example of an obedient and revelation-proof laminar partition is

A := {Ai}i∈N = {[γi, γi+1]}i∈N , which we will call the fully informative partition. Note

that while A is not fully revealing, it provides the minimal information necessary for

the receiver to take her complete-information-optimal action in each state.

12In combinatorics, a laminar set family has each pair of elements either nested or disjoint. We
borrow the term from Candogan and Strack (2023) where the definition of a laminar partition is similar
to ours but allows for any nesting partial order. This is essentially equivalent for finite partitions, in
the sense that our partition comes with an exogenous linear order that must complete the nesting
partial order.
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Equilibrium Payoff Set

Our first result characterizes equilibrium ex-ante payoffs of the sender in terms of

obedient and revelation-proof laminar partitions. We say that an equilibrium is sender-

preferred if it yields the highest ex-ante payoff for the sender across all equilibria.

Analogously, we refer to the ex-ante payoff-minimizing equilibrium as sender-worst.

Theorem 1. (a) There exists a sender-worst equilibrium that is associated with the

fully informative partition A and yields V :=
∑

i∈N µF (Ai)ui.

(b) There exists a sender-preferred equilibrium that is associated with an obedient and

revelation-proof laminar partition and yields V > V .

(c) For any V ∈ [V , V ], there exists an equilibrium associated with an obedient and

revelation-proof laminar partition.

We provide the intuition for Theorem 1 below. Part (a) is straightforward: as in

most disclosure games, there exists an equilibrium in which the receiver acts as if she is

fully informed. In our setting, that equilibrium is associated with the fully informative

partition A. The sender’s ex-ante payoff cannot fall below V , or else the sender would

have a profitable deviation toward fully revealing the state in a positive measure of

states.

The key step to prove part (b) is showing that for any equilibrium partition there

exists an equilibrium laminar partition that induces the same posterior mean distribu-

tion (PMD), and hence yields the same ex-ante payoff to the sender. We first observe

that any partition induces a PMD with support on at most n points (posterior means);

using the techniques from Candogan and Strack (2023), we show that any such PMD

can be induced by a laminar partition. Then, we further show that if a PMD is in-

duced by an obedient and revelation-proof partition, then the laminar partition that

induces the same PMD is guaranteed to be obedient and revelation-proof. In that

sense, laminar partitions are the most revelation-proof partitions.

We illustrate the intuition behind laminar partitions being the most revelation-

proof ones in Figure 3 using the simplest case when n = 2. Consider two partitions,

B (laminar) and W (non-laminar) that induce the same posterior mean distribution

and whose corresponding elements have the same prior mass; that is, E[ω | ω ∈ Bi] =

E[ω | ω ∈ Wi] and µ0(Bi) = µ0(Wi) for all i ∈ N . Since B is laminar, its lowest-indexed

element B1 is an interval. If W1 is not interval, the only way to match Bi’s prior mass

and expectation is to have maxB1 ≤ maxW1. Consequently, if W is revelation-proof

11



0 1

B2B2

B1

γ2

0 1

W2W2

W1W1

γ2

Figure 3. Two partitions, B (laminar) and W (non-laminar) that induce the same
posterior mean distribution and whose corresponding elements have the same prior

mass. Whenever W is revelation-proof, so is B.

(which in the case of two actions reduces to maxW1 ≤ γ2), then so is B.
In a sender-preferred equilibrium, the receiver breaks the ties in favor of the sender,

so a single action is taken with probability one in each state. Therefore, every sender-

preferred equilibrium is payoff equivalent to a partitional equilibrium, i’th element of

the partition contains states in which action the receiver takes action i. Consequently,

to find a sender-preferred equilibrium, it suffices to focus on laminar partitional equi-

libria. A sender-preferred laminar PE is associated with a partition that solves

max
B

∑
i∈N

µF (Bi)ui

subject to B is an obedient and revelation-proof laminar partition.

(2)

We show that Problem (2) admits a solution,13 which implies that a sender-preferred

equilibrium exists. To show that V > V , we construct an obedient and revelation-proof

(and hence equilibrium) laminar partition that yields a strictly higher payoff than V .

For example, we could take the fully revealing partition {[γi, γi+1]}i∈N and “move”

the interval [0, ε] from the first element of the partition to the n-th one. If ε > 0 is

sufficiently small, the resulting partition would remain obedient, revelation-proof and

laminar, but the sender’s ex-ante utility in the associated equilibrium would be strictly

higher than V . Therefore, sender’s ex-ante payoff in his most preferred equilibrium

must also exceed V .

To prove Part (c), we show that for any payoff between V and V there exists

an laminar equilibrium partition that blends the sender-worst (fully informative and

13The existence of a solution follows from the extreme value theorem. To apply it, we endow
the space of laminar partitions with a topology that makes the sender’s payoff continuous and the
constraint set compact.
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laminar) partition A and the sender-preferred laminar equilibrium partition B that

yields that payoff.

Sender-preferred Equilibrium

Next, we characterize the sender-preferred laminar partitional equilibrium. We say

that action i is skipped in partition B if Bi is a null set and unskipped otherwise. We

refer to a partition B as barely obedient if E[ω | ω ∈ Bi] = γi for all unskipped i ∈ N ,

except the lowest.

Theorem 2. There exists a sender-preferred laminar equilibrium partition B such that

(i) Bi is the union of at most max{i − 1, 1} closed intervals for all i ∈ N , and (ii) B
is barely obedient. Furthermore, a barely obedient laminar partition is an equilibrium

partition if and only if maxBi ≤ γi+1 for any unskipped i > 1 such that i + 1 either

nests i or is skipped.

Theorem 2 characterizes the solution to Problem (2), which is an obedient and

revelation-proof laminar partition that maximizes the sender’s ex-ante payoff. Condi-

tion (i) follows from laminarity of B. First, we find that Bj = [0, d] for some d ≤ γj+1

for the lowest unskipped action j. That is, the lowest unskipped action is an interval

that is not in the convex hull of any other partitional elements. Then, each partitional

element with index k ≥ 2 must be a union of at most k−1 intervals by the definition of

a laminar partition. Next, B must be barely obedient; otherwise, one could pool addi-

tional low states with high states without violating obedience or revelation-proofness,

thereby obtaining an equilibrium with a strictly higher ex-ante sender payoff. Specif-

ically, if j is the lowest unskipped action, one can reassign a subset of Bj of strictly

positive measure to Bk for some k > j.

Next, revelation proofness is equivalent to maxBi ≤ γi+1 for each action i. The

second part of Theorem 2 shows that for a barely obedient laminar partition, this

constraint is only binding for an action in two specific scenarios, illustrated in Figure 4:

either the next-highest action is skipped, or the action’s corresponding partitional

element is nested within the convex hull of the partitional element for the next-highest

action. In all other instances, revelation proofness is automatically satisfied. This

finding further emphasizes that the laminar structure makes revelation proofness easier

to fulfill.

As in Candogan and Strack (2023), the laminar structure emerges in a sender-

preferred equilibrium of our game due to incentive constraints. In Candogan and
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0 1

B3

B2

B1

γ2 γ3

(a) If action 2 is skipped and γ2 < maxB1,
then full revelation induces the higher skipped

action 2 for all ω ∈ [γ1,maxB1) ⊆ B1.

0 1

B3B3

B2

B1

γ3

(b) If γ3 < maxB2 and co(B2) ⊆ co(B3),
then full revelation induces the higher action

3 for all ω ∈ [γ2,maxB2) ⊆ B2.

Figure 4. Violations of revelation proofness ruled out in Theorem 2.

Strack (2023), where the receiver is privately informed, it serves to prevent the receiver

from misreporting her private information. In our setting, it instead optimally balances

the trade-off between deterring the sender’s deviations and inducing the most desirable

action distribution.

As discussed after Theorem 1, laminar partitions are the most revelation-proof

among all obedient partitions. However, interval partitions—a special case of laminar

partitions—often fail to be sender-preferred equilibrium partitions. This underscores

the importance of pooling nonadjacent states in inducing the most desirable distribu-

tion over actions subject to obedience and revelation proofness. To illustrate, recall

our introductory example with p = 0.6. The interval partition that generates the

highest sender’s ex-ante payoff is given by BI
1 = [0, 1

4
], BI

2 = [1
4
, 3
4
], BI

3 = [3
4
, 1]. Since

E[ω | ω ∈ BI
3 ] > γ3 =

3
4
, we can pool the states from the top of BI

1 with BI
3 , until the

partition becomes barely obedient. This process results in yields a sender-preferred

equilibrium partition B1 = [0, 3−
√
5

4
], B2 = [1

4
, 3
4
], B3 = [3−

√
5

4
, 1
4
] ∪ [3

4
, 1].

4 When Is Commitment Payoff Achievable?

While the extent to which the sender benefits from verifiable communication depends

on the specific parameters, an upper bound on the sender’s payoff is given by his

commitment payoff; i.e., his payoff when he can commit to what messages to send in

each state. In this section, we identify conditions under which the sender can attain

his commitment payoff in an equilibrium of the disclosure game.

4.1 Commitment Benchmark

We start by introducing the commitment problem, or information-design problem, as

a benchmark. In this problem, the sender can commit to any experiment that reveals

14



information about the state. An experiment is a mapping χ : [0, 1] → ∆(S), where

S is a sufficiently rich signal space. For each state ω ∈ [0, 1], a signal s ∈ S realizes

according to χ(ω). Because the receiver’s optimal action only depends on the expected

state, it is without loss to restrict attention on the class of experiments where S = [0, 1],

and each s ∈ S is calibrated to equal the induced posterior mean: s = E[ω | s].
Such a calibrated experiment χ induces the posterior mean distribution with a CDF

G(x) =
∫ 1

0

∫ x

0
dχ(s|ω)dF (ω).

It is well known that a posterior mean distribution G is induced by some experiment

if and only if G is a mean-preserving contraction of the prior CDF F .14 Consequently,

the commitment problem can be stated as a maximization of the expected value v with

respect to the PMD:

max
G∈MPC(F )

∫ 1

0

v(x) dG(x), (3)

where MPC(F ) is the set of all mean-preserving contractions of F . We call any solution

to problem (3) a commitment solution, and call the value of problem (3) the com-

mitment payoff. Clearly, the commitment payoff is an upper bound of the sender’s

equilibrium payoff in the disclosure game.

Finally, we say that a commitment solution G is implementable with verifiable

messages, or just implementable, for short, if there is an equilibrium in which the

sender’s strategy induces a distribution of the receiver’s posterior means G.

We say that an experiment χ is associated with a partition B if it maps almost each

ω ∈ Bi into the degenerate distribution centered on E[ω | ω ∈ Bi]. In other words,

such an experiment discloses only which element of the partition the state belongs to.

In this case, we also say that the induced posterior mean distribution G is associated

with this partition.

Next, we define a refinement of the laminar property which will be key for optimality

under commitment.

Definition 3. A laminar partition is a bi-pooling partition if every partitional element

Bi is either an interval, or there exists a unique j ∈ {0, . . . , n− 1} such that j < i and

Bj ⊆ co(Bi).

While laminar partitions allow any Bj with j < i to be nested within co(Bi),

14See, for example, Gentzkow and Kamenica (2016) and Kolotilin (2018). A distribution G ∈
∆([0, 1]) is a mean-preserving contraction of F if

∫ x

0
G(s)ds ≤

∫ x

0
F (s)ds for all x ∈ [0, 1], where the

inequality binds at x = 1.
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0 1

B4

B3

B2

B1

(a) B1, B2, and B3 are intervals, and
co (B4) only contains B3.

0 1

B4

B3

B2

B1

(b) B4 is not an interval, and
B2, B3 ⊆ co (B4).

Figure 5. A bi-pooling partition in panel (a) and a laminar partition that is not a
bi-pooling partition in panel (b), which is the same as that in Figure 2a.

bi-pooling partitions allow only for a single such Bj to be nested within co(Bi) (see

Figure 5).

The following result regarding bi-pooling partitions is a direct consequence of results

in Kleiner et al. (2021), Candogan (2022), and Arieli et al. (2023). Say that the

communication environment is generic if no three elements of the collection of points

{(γi, ui)}i∈N are collinear.

Theorem 3.

(i) There exists a commitment solution associated with a unique barely obedient bi-

pooling partition.

(ii) For generic communication environments, the commitment solution is unique.

Theorem 3 indicates that, despite the simplicity of bi-pooling partitions, there

always exist a commitment solution associated with a bi-pooling partition. Moreover,

under mild conditions, the unique commitment solution is associated with a bi-pooling

partition.

4.2 Characterizing Implementability

The following result characterizes the implementability of a commitment solution as-

sociated with a bi-pooling partition.

Proposition 1. Let G be a commitment solution associated with a bi-pooling partition

B. Then, G is implementable if and only if B is revelation-proof.

It follows directly from Theorem 3 and Proposition 1 that in a generic communica-

tion environment, the unique commitment solution is implementable if and only if the

associated bi-pooling partition is revelation-proof.
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The “if” part of Proposition 1 is a direct consequence of Theorem 2 in Titova and

Zhang (2025), which states that for a partition associated with a commitment solution,

implementability is equivalent to revelation proofness. Our primary contribution in

Proposition 1 is to show that among all sender strategies that induce a commitment

solution, the one associated with a bi-pooling partition has the best shot at being an

equilibrium strategy. Roughly, this stems from the fact that bi-pooling partitions are

a special case of laminar partitions, which exhibit a similar property.

Proposition 1 is useful in that it suggests a “guess and verify” approach for find-

ing the sender-preferred equilibrium. First, one finds the commitment solution using

standard information design methods. Second, one identifies the associated bi-pooling

partition. If this partition proves to be revelation-proof, then the sender-preferred

equilibrium has been successfully identified.

The next result, which is a corollary of Proposition 1 and Theorem 2, goes one

step further: it reveals the exact features of bi-pooling partitions that fail revelation

proofness and hence prevent the commitment solutions from being implementable.

Corollary 1. Let G be a commitment solution associated with a bi-pooling partition B.
Then, G is implementable if and only if B is such that maxBi ≤ γi+1 for all unskipped

i such that i+ 1 either nests i or is skipped.

Compared to the definition of revelation proofness, the two conditions in Corollary 1

are easier to verify when determining whether a commitment solution is implementable.

They also allow us to identify sufficient conditions under which commitment has no

value in Section 4.3.

To illustrate this result, recall our introductory example with A = {1, 2, 3}, u1 =

0, u2 = p, u3 = 1, γ2 = 1
2
, γ3 = 3

4
, and uniform F . When p = 0, there is a unique

commitment solution associated with a bi-pooling partition given by B1 = [0, 1
2
], B2 =

∅, B3 = [1
2
, 1]. Because this partition is monotone, no action is nested. As for con-

dition (i), note that action 2 is skipped and action 1 is the highest unskipped action

below. Therefore, (i) is satisfied because maxB1 = 1
2
≤ 1

2
= γ2. In other words, the

commitment-optimal partition is revelation-proof because the sender cannot induce an

action higher than 1 by revealing themselves in any state in B1.

When p = 0.5, there is a unique commitment solution associated with a bi-pooling

partition given by B1 = [0, 1
4
], B2 = [ 5

16
, 11
16
], B3 = [1

4
, 5
16
] ∪ [11

16
, 1]. Because no action is

skipped, (i) is trivially satisfied. As for condition (ii), note that B2 is nested by co(B3).

Therefore, (ii) is satisfied because maxB2 =
11
16

≤ 3
4
= γ3.
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Proposition 1 and Corollary 1 may have created a feeling that implementing a com-

mitment solution associated with a bi-pooling partition is relatively simple: one only

needs to ensure that no action is recommended more often than revelation proofness

allows. Indeed, when the receiver is choosing between two actions, Titova and Zhang

(2025) showed that revelation proofness is automatically satisfied. When there are

three or more actions, however, the restriction imposed by revelation proofness can be

substantial. We illustrated this in our introductory example with p = 0.6. In this case,

the commitment-optimal bi-pooling partition is given by B1 = [0, 1
8
], B2 = [11

64
, 53
64
], B3 =

[1
8
, 11
64
] ∪ [53

64
, 1]. Note that in this case (ii) is violated because B2 is nested by co(B3),

but maxB2 =
53
64
> 3

4
= γ3.

When there are two actions, the sender’s sole objective is to maximize the probabil-

ity that the “high action” 2 is played. This, in turn, suggests that revelation proofness

is never an issue: in any state in which action 2 is played under complete information,

there is no reason to recommend action 1. However, with three actions, as Gentzkow

and Kamenica (2016) note, in the commitment problem the sender faces a trade-off

between inducing actions 2 and 3. When p is high, the gap between u2 and u3 is

significantly smaller than that between u1 and u2, and hence it is more profitable to

induce action 2 more often: to guarantee obedience, recommending action 3 more of-

ten must come with action 1 being played more frequently. Consequently, the unique

commitment-optimal partition recommends action 2 so frequently that maxB2 > γ3.

Then in states strictly higher than γ3, the sender is strictly better off by fully revealing

the state, rendering the commitment solution not implementable.

4.3 Sufficient Conditions for Implementability

In what follows we identify conditions on model primitives that guarantee an imple-

mentable commitment solution exists. Under these conditions, the sender would not

benefit from commitment relative to the sender-preferred equilibrium. The equilibrium

payoff set and the sender-preferred equilibrium partition can thus be found by solving

the corresponding commitment problem. Conversely, the commitment assumption is

unnecessary for any information-design problem that satisfies these conditions.

To state the result, let h(γi; γi+1) denote the unique solution of E[ω | ω ∈ [h(γi; γi+1),

γi+1]] = γi if it exists, and set it to 0 otherwise. Intuitively, h(γi; γi+1) is the lowest

state such that the conditional mean of the states between this state and γi+1 is no

less than γi.
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Proposition 2. Suppose there are three or more actions. If

ui+1 − ui
γi+1 − γi

>
ui − ui−1

γi −max {γi−1, h (γi; γi+1)}
, (4)

for all i = 2, . . . , n − 1, then every commitment solution associated with a bi-pooling

partition is implementable. Consequently, the commitment payoff is attained in an

equilibrium of the disclosure game.

In Condition (4), ui+1 − ui is the sender’s marginal benefit of inducing a higher

action evaluated at action i, and γi+1 − γi is the difference in cutoffs for inducing

actions i + 1 and i under complete information, respectively. Proposition 2 suggests

that in a communication environment, if inducing a marginally higher action is either

sufficiently more profitable or sufficiently more difficult (requiring a sufficiently larger

expected state), or both, then the sender does not benefit from commitment power.

Put differently, the sender does not value commitment when his value function increases

sufficiently fast in the expected state.

The rough intuition behind Proposition 2 is as follows. To establish the sufficiency

of (4), we will argue that any partition that is not revelation-proof must also fail

optimality in the commitment problem. Take any barely obedient bi-pooling partition

B that is not revelation-proof. Then, some action i is recommended in some states in

which the sender would prefer to fully reveal the state to induce a higher action instead;

that is, maxBi > γi+1. To illustrate how B can then be strictly improved, suppose Bi

is an interval. Then, maxBi > γi+1 and obedience implies γi+1 ∈ Bi. Next, modify

the partition by shrinking Bi and shifting the probability of recommending action i to

actions i− 1 and i+ 1. Recommending action i+ 1 can be still made barely obedient

by inducing belief γi+1. At the same time, action i − 1 can now be induced at γi−1

if γi−1 is not too low, and otherwise at h(γi; γi+1). Either way, condition (4) ensures

that such a local mean-preserving spread is profitable by requiring the sender’s utility

to be “convex enough” with respect to the cutoffs {γi}i∈N . Consequently, any barely

obedient partition associated with a commitment solution must be revelation-proof,

and thus every such commitment solution is implementable.

Imposing a further assumption on the prior, Condition (4) can be simplified.

Corollary 2. Suppose there are three or more actions. If for all i = 1, . . . , n − 1,

ui+1−ui ≥ ui−ui−1 and γi+1−γi ≤ γi−γi−1 with one of the inequalities being strict, and

f is increasing, then every commitment solution associated with a bi-pooling partition
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is implementable. Consequently, the commitment payoff is attained in an equilibrium.

An increasing prior density is equivalent to a convex prior CDF. This condition is

satisfied by the uniform distribution, and more generally the family of power distribu-

tions on [0, 1] with CDF given by F (x) = xα, α ≥ 1.

4.4 The Special Case of Ternary Actions

It is instructive to take a deeper dive into the case in which the receiver has three

actions. In this case, a partition can be written as B = {B1, B2, B3}. As implied

by Theorem 2 (i), in a sender-preferred laminar equilibrium partition, B1 must be an

interval if not null. Moreover, B2 and B3 are either both intervals or are such that

B2 ⊆ co (B3), meaning that B is a bi-pooling partition.15 Consequently, Theorem 2

implies that revelation proofness boils down to maxB1 ≤ γ2.

Armed with these observations, a sender-preferred equilibrium can be explicitly

solved.

Claim 1. Suppose that |N | = 3.16 A sender-preferred equilibrium is associated with a

barely obedient bi-pooling partition B that either is also associated with the commitment

solution, or is such that B1 = [0, y], B2 = [h, γ3], and B3 = [y, h]∪ [γ3, 1], where h > 0,

y ≥ 0 solve the system of equations

E [ω | ω ∈ [h, γ3]] = γ2;

E [ω | ω ∈ [y, h] ∪ [γ3, 1]] = γ3.

When there are only three actions, the only reason that a commitment solution is

not implementable is that the “middle action” 2 is recommended too often. Therefore,

if no commitment solution is implementable, in the bi-pooling partition associated with

a sender-preferred equilibrium, action 2 is recommended as frequently as revelation

proofness allows: that is, the upper bound of B2 must coincide with γ3. The proofs of

all results in this subsection are relegated to a supplementary appendix.

The sufficient conditions can be further simplified when |N | = 3.

Corollary 3. If |N | = 3, f is increasing, and u3 > 2u2, then all commitment solutions

are implementable.

15Both B1 and B2 may be empty, but B3 cannot be: otherwise, revelation proofness must be
violated.

16For a finite set K, let |K| denote the cardinality of K.
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Applying Corollary 3 to our introductory example, since u2 = p and u3 = 1, as long

as p < 0.5, the seller does not benefit from commitment power. In other words, even

prior to solving the commitment problem, we know that a sender-preferred equilibrium

partition can be identified from the commitment solution.

5 Applications

5.1 Selling with Quality Disclosure

We first consider a variant of the model of a sales encounter studied in Section 5 of

Milgrom (1981). The state of the world, ω, is interpreted as the quality of the seller’s

product. Let p > 0 be the unit price, and for simplicity, assume that there is no

quantity discount. Denote the seller’s constant unit cost by c, where 0 ≤ c < p.

The product is indivisible: the buyer can only buy integer units of the product. The

buyer’s utility from purchasing q units is ωU(q)− pq, where U : R+ → R is a bounded,

strictly increasing, strictly concave threetimes differentiable function with U(0) = 0.

We further assume that U(q)−pq is maximized at n > 1. As a consequence, the buyer

buys at most n units of the product, and she buys nothing if ω is close enough to 0.

The only significant difference between this model and that of Milgrom (1981) is

that he considers a perfectly divisible product, and hence the seller’s value function

is strictly increasing. In this model, however, indivisibility makes the seller’s value

function a step function with n jumps. For a perfectly divisible product, Milgrom shows

that every equilibrium of the game features full revelation: the seller sendsm = {ω} for

each ω ∈ [0, 1], resulting in the buyer-preferred outcome. With indivisibility, however,

the seller may be able to gain considerably from verifiable communication, attaining

his commitment payoff.

To state the result, let

A(x) = −U
′′(x)

U ′(x)
, and P (x) = −U

′′′(x)

U ′′(x)

denote the coefficients of absolute risk aversion and absolute prudence, respectively.

Claim 2. If f is increasing and P > 2A, there exists an equilibrium of this game in

which the seller is as well off as having commitment power.

The proofs of results in this section are left to a supplementary appendix. The
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assumption of increasing prior density can be interpreted as it is common knowledge

that the consumer is relatively confident about the quality of the product. P > 2A is

satisfied by, for example, CRRA utility function with parameter 0 < σ < 1.

5.2 Influencing Voters

Consider an amendment voting setting where a voting rule satisfying the Condorcet

winner criterion is employed to determine which one of the three alternatives, the

(unamended) bill (b), the amended bill (ab), and no bill (maintaining the status quo;

∅), will prevail.17 The state of the world is ω ∈ [0, 1], and denote the set of voters by J ;

for simplicity, assume that |J | > 1 is an odd number. Voters have linear preferences:

for j ∈ J , voter j’s utilities are given by ujk(ω) = αj
k + βj

kω, where k ∈ {b, ab,∅}
and where ω ∈ [0, 1] is the state of the world. Moreover, βj

b > βj
ab > βj

∅ = 0 and

0 = αj
∅ > αj

ab > αj
b for all j ∈ J . Let γj2 and γj3 denote the cutoff states that voter

j is indifferent between ∅ and ab, and ab and b, respectively.18 We impose further

assumptions so that γj2 < γj3 for all j ∈ J .

In this model, voter j’s preferences over alternative k are characterized by two

parameters: one is αj
k, we call it voter j’s reference point for alternative k as it is

the voter’s cardinal utility when the state is zero; another is βj
k, we call it voter j’s

state sensitivity for alternative k because it measures how fast the voter’s cardinal

utility increases in the state. Furthermore, all voters agree that when the state is low

(intermediate, high), no bill (the amended bill, the bill, respectively) is optimal, but

for the amended bill or the bill, different voters may have different reference points and

different state sensitivity levels. Figure 6 illustrates a voter’s utilities and the resulting

cutoffs.

There is an expert who observes the state and can communicate to the voters. We

follow Jackson and Tan (2013) to assume that the expert discloses verifiable informa-

tion. Unlike their work with two states, however, we consider a continuum of states,

and the expert’s messages are closed subsets of the state space that contain the true

state. Assume that the expert’s preferences satisfy u(b) > u(ab) > u(∅) = 0; that is,

17See, for example, Enelow and Koehler (1980) and Enelow (1981) for examples of amendment
voting.

18For every j ∈ J ,

γj
2 = −

αj
ab

βj
ab

and γj
3 =

αj
ab − αj

b

βj
b − βj

ab

.
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b
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Figure 6. Voter j’s utilities.

the expert strictly prefers the bill to the amended bill, and the amended bill is strictly

preferred to no bill.

Because the voting rule satisfies the Condorcet winner criterion, and the prefer-

ences are single-peaked, the Condorcet winner is the median voter’s most preferred

alternative.19 Therefore, it suffices to consider the median voter; further assumptions

are imposed to make sure that the median voter is the same voter, say voter m, for all

states.20 Consequently, the expert’s problem is equivalent to communicating to voter

m alone. Thus, the expert-preferred equilibrium is characterized by Claim 1.

Claim 3 shows that the expert can be hurt if all voters become “more inclined

toward” the bill, in the sense that all else equal, either the reference point or the state

sensitivity for the bill increases (or both) for all voters.

Claim 3. If no commitment solution is implementable, and at least one of the following

happens:

(i) voter j’s state sensitivity for the bill, βj
b , increases for all j ∈ J ,

(ii) voter j’s reference point for the bill, αj
b, increases for all j ∈ J ,

then the expert’s payoff in his preferred equilibria may decrease.

19One voting rule used for amendment voting that satisfies the Condorcet winner criterion when vot-
ers’ preferences are single-peaked is the pairwise majority rule, in which alternatives will be considered
sequentially and two at a time using the majority rule.

20That is, we assume that for any two voters where one is indexed higher than the other (i > j),
γi
2 ≥ γj

2 and γi
3 > γj

3 (see Footnote 18 for the definition of the cutoffs). A sufficient condition for

this assumption is that (i) all voters share the same reference points for both b and ab: αj
b = αb and

αj
ab = αab for all j ∈ J ; (ii) among voters, those with a higher index not only exhibit higher state

sensitivity for both b and ab but also show a strictly greater difference in state sensitivity between
these alternatives: i > j implies βi

ab ≥ βj
ab, β

i
b ≥ βj

b , and βi
b − βi

ab > βj
b − βj

ab.
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When either (i) or (ii) occurs (or both), γj3 decreases for every voter j, and hence

γm3 must also decrease. This implies that the expected state required to pass the

bill is lowered. Recall from the discussion after Claim 1 that in scenarios where no

commitment solution is implementable, the expert is too tempted to recommend the

amended bill at the ex-ante stage. This may occur when the utility gap between the

bill and the amended bill is smaller than that between the amended bill and the status

quo (i.e., u(b) − u(ab) < u(ab) − u(∅)), which is plausible in many voting scenarios.

As γm3 decreases, the expert can more frequently induce the passage of the original

bill. However, this also introduces an adverse indirect effect: the revelation proofness

constraint tightens, limiting the chance of inducing the amended bill. Therefore, the

expert is harmed if the indirect effect dominates.

6 Discussion

6.1 Assumption on the Message Space

Although our assumption on the message space is standard in the literature, it is

useful to discuss the meaning of this assumption as well as how our results rely on

it. Importantly, the sender does not need to literally use a closed subset of the state

space as his message; what we require is complete provability : the sender can prove

any true fact. More specifically, in each state ω, the sender’s message space, or the set

of evidence, M(ω), is sufficiently rich in the sense that for every closed subset C of

the state space [0, 1], there is a message m that provides hard evidence that the state

is contained in C. Formally, m ∈M(ω) if and only if ω ∈ C.

Two implications of this assumption are crucial to our results. First, the sender can

always fully reveal the state; that is, the fully revealing message m = {ω} is feasible in

every ω ∈ [0, 1]. This implies that in every state, the sender’s equilibrium payoff must

be no lower than his payoff from fully revealing the state, which gives rise to revelation

proofness. It turns out that full revelation is the only kind of deviation that needs

to be accounted for, which largely simplifies the analysis. Second, the sender can use

messages that are the unions of a finite number of closed intervals; the importance of

this feature is already explained in the previous sections.21

21One might believe that the payoffs of a laminar partition can be replicated using only closed
interval messages, by identifying each message with its convex hull. However, this approach fails.
Consider two partitional elements Bℓ, Bh with Bℓ ⊆ co(Bh). If one wants co (Bh) to be sent in every
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6.2 Robustness

It is natural to ask whether the equilibria of the disclosure game considered in this

paper are credible in that they survive certain equilibrium refinements. We consider

the following two equilibrium refinements:

• The Never-a-Weak-Best-Response (NWBR) Criterion, proposed by Cho and Kreps

(1987), is a strengthening of a few equilibrium refinements that are extensively

used in the literature, which includes the Intuitive Criterion, D1, and D2.22

• The Grossman-Perry-Farrell equilibrium, proposed by Bertomeu and Cianciaruso

(2018), is based on the perfect sequential equilibrium of Grossman and Perry

(1986) and neologism-proofness of Farrell (1993).

It can be shown that every PE of the disclosure game we study is a Grossman-Perry-

Farrell equilibrium. Furthermore, every PE outcome survives the NWBR Criterion.

Interested readers are referred to the supplementary appendix for formal details.

6.3 Further Cheap Talk Opportunities

One may wonder what the sender would be able to achieve if he were also allowed

to send cheap talk messages. Indeed, Wu (2022) and Dasgupta (2023) show that this

benefits the sender in their respective settings. However, this is not the case in our

setting.

Define the sender’s value function in beliefs, denoted by w : ∆(Ω) → R, by w(G) :=
v(EG) for any G ∈ ∆(Ω), where v is the sender’s value function. Theorem 2 in

Lipnowski and Ravid (2020) asserts that the sender’s optimal value is given by the

quasiconcave hull of his value function in beliefs evaluated at the prior F .23 Observe

that w is the composite function of v and the expectation operator E. Because v is

increasing, and an increasing transformation of an affine function is quasiconcave, w

coincides with its quasiconcave hull. The aforementioned theorem therefore suggests

that the sender never benefits from further cheap-talk opportunities.

ω ∈ Bh, this message is also available to every ω ∈ Bℓ since Bℓ = co(Bℓ) ⊆ co (Bh). Consequently,
in almost every ω ∈ Bℓ, the message co(Bh) is sent, which renders replicating the laminar partition
impossible.

22Although closely related, this is not precisely the same as the NWBR property proposed by
Kohlberg and Mertens (1986). For this reason, Fudenberg and Tirole (1991) call it “NWBR in
signaling games.”

23The quasiconcave hull of a function w : ∆(Ω) → R is the pointwise lowest quasiconcave and upper
semicontinuous function that majorizes w.
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A Omitted Proofs and Details

A.1 Proofs for Section 3

In what follows, we employ the following result, which is essentially Theorem 1 in

Titova and Zhang (2025) adapted to our setting.24 We provide a proof below for

completeness.

Lemma 1. B is an equilibrium partition if and only if it is obedient and revelation-

proof.

Proof. Sufficiency is straightforward: if B is not revelation-proof or obedient, then in

every associated assessment, the sender has a profitable deviation to full revelation or

the receiver is not best responding to an on-path message. For necessity, suppose that

B is an obedient and revelation-proof partition. Let (σ, τ, p) be an associated partition

such that the receiver (1) has maximally skeptical off-path beliefs and (2) best responds

according to her posterior mean and breaks ties in the sender-adversarial manner when

indifferent. Specifically, for each m /∈ B, let p(minm | m) = 1, and τ(j | m) = 1 if

minm ∈ [γj−1, γj) and j ∈ N ∖ {n}, or minm ∈ [γn−1, γn] and j = n. Then, (σ, τ, p) is

an equilibrium, and thus B is an equilibrium partition. Indeed, equilibrium conditions

2, 3, and 4 are satisfied by construction. Equilibrium condition 1 (sender has no

profitable deviations for each ω) is satisfied because if ω ∈ Bi and ω /∈ Bi+1 ∪ . . .∪Bn,

then the sender’s interim payoff is ui; deviations to on-path messages with a higher

index are not feasible, deviations to on-path messages with a lower index or to off-path

messages yield an interim payoff of at most ui. ■

To prove Theorem 1, we will need three auxiliary results.

Claim 4. Let H be a mean-preserving contraction of F with | supp (H)| ≤ n. Then

there exist cutoffs 0 =: d0 ≤ d1 ≤ . . . ≤ dm−1 ≤ dm := 1 with m ≤ | supp (H)| such that

24The messages in this paper are closed subsets of the state space, while in Titova and Zhang (2025)
they are Borel subsets of the state space.
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∫ x

0
H(q) dq ≤

∫ x

0
F (q) dq on [di−1, di] for all i = 1, . . . ,m and the inequality binds only

at di−1 and di.

Proof of Claim 4. First, let supp (GS) = {γ̃i}ki=1, where k ≤ n since | supp (H)| ≤ n

and γ̃i < γ̃j if i < j. Since F (0) = H(0) = 0, F is strictly increasing (since f > 0),

and HS is a step function, there exists ε > 0 such that F (x) > H(x) for all x ∈ [0, ε].

Since H ∈MPC(F ), we have
∫ 1

0
H(q) dq =

∫ 1

0
F (q) dq, and hence the set

D1 =

{
x ∈ [ε, 1] :

∫ x

0

H(q) dq =

∫ x

0

F (q) dq

}
is nonempty. Let d1 = infD1. If d1 = 1, then set m = 1 and the proof is complete.

For the rest of the proof, suppose that d1 < 1.

Observe that γ̃1 < d1 < γ̃k: if d1 ≤ γ̃1, then F (x) > H(x) = 0 for all x ∈ [0, d1),

which contradicts the definition of d1; if d1 ≥ γ̃k, then F (x) < H(x) = 1 for all

x ∈ [d1, 1], so that
∫ 1

0
H(q) dq ̸=

∫ 1

0
F (q) dq, a contradiction.

Next, we argue that F (d1) ≥ H(d1). Suppose to the contrary that F (d1) < H(d1).

Then, since H is a CDF and hence right-continuous, there must exist δ > 0 such that

F (x) < H(x) = H(d1) for all x ∈ [d1, d1 + δ], where the equality follows from the fact

that H is a step function. Then,∫ d1+δ

0

F (q) dq =

∫ d1

0

F (q) dq +

∫ d1+δ

d1

F (q) dq =

∫ d1

0

H(q) dq +

∫ d1+δ

d1

F (q) dq

<

∫ d1

0

H(q) dq +

∫ d1+δ

d1

H(q) dq,

which contradicts the assumption that H is a MPC of F .

Now, let j = min{i : γ̃i > d1}. Given that d1 < γ̃j, F (d1) ≥ H(d1), F is strictly

increasing, and H is a step function, there exists η > 0 such that F (x) > H(x) for all

x ∈ [d1, d1 + η]. Consequently,
∫ 1

0
H(q) dq =

∫ 1

0
F (q) dq implies that the set

D2 =

{
x ∈ [d1 + η, 1] :

∫ x

0

H(q) dq =

∫ x

0

F (q) dq

}
is nonempty. Let d2 = infD2. If d2 = 1, then set m = 2 and the proof is complete.

For the remainder of the proof, suppose that d2 < 1. Using the same steps as above,

one can show that d2 > γ̃j and F (d2) ≥ H(d2). Proceeding inductively, one can find dt

with t ≤ k ≤ n such that dt > γ̃k. It must be that dt = 1: suppose not, then because
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F is strictly increasing, F (x) < 1 on (dk, 1); but H(x) = 1 on the same interval, which

implies that
∫ 1

0
H(q) dq >

∫ 1

0
F (q) dq, a contradiction. Now set m = t, the proof is

complete. ■

Claim 5. If H is a mean-preserving contraction of F with | supp(H)| ≤ n, then it

induces a laminar partition.

Proof. By Claim 4, on each of the m intervals such that the MPC constraint only binds

at the endpoints, the mass is redistributed to at most n points, and there can be at

most m such intervals. We show that every such interval admits a laminar partition;

the definition of a laminar partition then implies that the resulting partition is still

laminar by taking the union.

Denote an arbitrary interval on which the MPC constraint only binds at the end-

points by I := [a, b]; that is,
∫ x

0
H(q) dq ≤

∫ x

0
F (q) dq for all q ∈ I, and the inequality

binds only at a and b.

The remainder of the proof is very similar to the proof of Lemma 11 in Candogan

and Strack (2023), and hence we only provide an outline here; readers interested in

details are directed to that paper. Let K = | supp (H) ∩ I| ≤ n; the proof proceeds by

induction on K. If K = 1, let supp (H) ∩ I = {γ̃ℓ}; then clearly {Bℓ} where Bℓ = I

is a laminar partition of I. If K = 2, let supp (H) ∩ I = {γ̃ℓ, γ̃m} where ℓ < m; then

by Lemma 4 in Arieli et al. (2023), {Bℓ, Bm} can be chosen such that Bℓ = [c, d] and

Bm = [a, c] ∪ [b, d], which is laminar.

Taking K = 2 as the base case, consider K > 2; the induction hypothesis holds

for K − 1. One can find a closed interval Bℓ such that (i) µF (Bℓ) = h(γ̃ℓ), where

h is the probability mass function (pmf) of H, and γ̃ℓ = min(supp (H) ∩ I),25 and

(ii) E[ω | ω ∈ Bℓ] = γ̃ℓ. Consequently, conditional on ω ̸∈ Bℓ, H only has K − 1

mass points, and Lemma 12 in Candogan and Strack (2023) shows that it is a MPC of

F . Invoking the inductive hypothesis, a laminar partition of I, {B̂i}i∈T , is obtained,

where T := {k ̸= ℓ : γk ∈ supp (H) ∩ I}. For every i ∈ T , let Bi := cl (B̂i ∖Bℓ). Since

{B̂i}i∈T is laminar, and ℓ < i for all i ∈ T , {Bi}i∈T ∪{ℓ} is also laminar. ■

Claim 6. Suppose that W ⊆ [0, 1] and B = [x, y] ⊆ [0, 1] such that µF (W ) = µF (B)

and E[ω | ω ∈ W ] = E[ω | ω ∈ B]. Then, infW ≤ x and y ≤ supW .

25The only difference between our proof and Candogan and Strack (2023)’s is that they choose
the mass point of H that has the largest index number on I, and for our purpose we work with the
smallest. Their proof, however, goes through despite this difference.
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Proof. We prove that y ≤ supW ; the proof of infW ≤ x is analogous. Since µF (W ) =

µF (B) and E[ω | ω ∈ W ] = E[ω | ω ∈ B], we have
∫
W∖B

ω dF (ω) =
∫
B∖W

ω dF (ω)

and µF (W ∖B) = µF (B ∖W ).

Suppose, by contradiction, that supW < y. Then, W ∖B ⊆ [0, x], B ∖W ⊆ [x, y]

and µF (W ∖B) = µF (B ∖W ) > 0. Furthermore,∫
W∖B

ω dF (ω) < xµF (W ∖B) = xµF (B ∖W ) <

∫
B∖W

ω dF (ω),

a contradiction. Therefore, y ≤ supW . ■

A.1.1 Proof of Theorem 1

Proof of Part (a). First, observe that the fully revealing partition A is obedient and

revelation-proof since Ai = [γi−1, γi] for each i ∈ N . By Lemma 1, it is an equilibrium

partition.

Next, we show that the sender’s ex-ante payoff cannot be lower than V in any other

equilibrium. Let w(ω) := min{ui : i ∈ N, ω ∈ Ai} be the sender’s payoff in state ω

when the receiver knows the state and breaks ties in the sender-adversarial manner.

By definition,
∫
Ω
w(ω) dF (ω) =

∑
i∈N µF (Ai)ui = V . If the sender’s ex-ante payoff is

strictly below V in an equilibrium, then his interim payoff is strictly below w(ω) in a

positive measure of states. Then, in each of those states, the sender has a profitable

deviation toward sending message {ω} and receiving w(ω). Therefore, the sender’s

ex-ante payoff in a sender-worst equilibrium is exactly V . This completes the proof of

Part (a).

Proof of Part (b). We proceed in three steps. First, we show that if there ex-

ists a sender-preferred equilibrium, then there exists a sender-preferred laminar PE

(Lemma 2). Second, we show that a sender-preferred laminar PE exists (Lemma 3).

Third, we show that V > V (Lemma 4).

Lemma 2. For any equilibrium in which the receiver plays pure strategy, there exists

a laminar equilibrium partition that induces the same posterior mean distribution.

Furthermore, if there exists a sender-preferred equilibrium, then there exists a sender-

preferred laminar partitional equilibrium.

Proof of Lemma 2. Let (σ, τ, p) be an equilibrium in which the receiver plays pure

strategies. For any state ω ∈ Ω in which the sender mixes, i.e., | supp σ(· | ω)| > 1,
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since (σ, τ, p) is an equilibrium, there exists i ∈ N such that τ(i | m) = τ(i | m′) = 1

for every m,m′ ∈ supp σ(· | ω). Thus, in every ω ∈ Ω, there is an action i played with

probability 1 in this equilibrium. For every i ∈ N , let

Wi := {ω ∈ Ω: τ(i | m) = 1 for all m ∈ supp σ(· | ω)} .

By construction, ∪i∈NWi = Ω, and Wi ∩Wj = ∅ for any i ̸= j. By Theorem 1(a)

of Titova and Zhang (2025), for every i ∈ N , γ̃i := E[ω | ω ∈ Wi] ∈ [γi−1, γi], and

Wi ⊆ [0, γi].

Consider the PMD G̃ with supp G̃ ⊆ {γ̃i}ni=1 whose probability mass function is

given by g̃(γ̃i) = µF (Wi). By construction, G̃ is a MPC of the PMD induced by the

equilibrium (σ, τ, p); since G is induced by an equilibrium, it is a MPC of F . Thus,

G̃ is a mean-preserving contraction of F with | supp(G̃)| ≤ n. Then by Claim 5, G̃

is also induced by a laminar partition B with generic element Bi. By construction,

for every i ∈ N , E[ω | ω ∈ Bi] = γ̃i, which implies obedience. Also by construction,

µF (Bi) = µF (Wi) for each i ∈ N .

We show next that B is also revelation-proof, i.e., Bi ⊆ [0, γi+1] for all i ∈ N . Fix

i ∈ N . Because B is laminar, there exists k ≤ i such that for every action j ∈ {k, . . . , i},
co(Bj) ⊆ co(Bi); and for every action j ∈ {1, . . . , k−1, i+1, . . . , n}, µF (Bj∩co (Bi)) =

0. This implies that B̂i := Bk∪. . .∪Bi = co(Bi) is an interval. Let Ŵi := Wk∪. . .∪Wi.

Since for each j = k, . . . , i, µF (Bj) = µF (Wj) and E[ω | ω ∈ Bj] = E[ω | ω ∈ Wj], and

since Wj ∩Wℓ = ∅ and µF (Bj ∩Bℓ) = 0 for any j ̸= ℓ, we have µF (B̂i) = µF (Ŵi) and

E[ω | ω ∈ B̂i] = E[ω | ω ∈ Ŵi]. By Claim 6, we have B̂i ⊆ Ŵi ⊆ [0, γi+1], where the

last inclusion follows since Wi ⊆ [0, γi+1] for all i ∈ N .

To prove the second statement, suppose that there exists a sender-preferred equi-

librium. Without loss, we focus on a sender-preferred equilibrium (σ, τ, p) in which the

receiver breaks ties in favor of the sender.26 Then by the first statement, there must

exist a sender-preferred laminar equilibrium partition. ■

Lemma 3. Among all obedient and revelation-proof laminar partitions, there is one

that maximizes the sender’s ex-ante payoff.

Proof. The problem of finding a laminar partitional equilibrium that maximizes the

26If the receiver plays a mixed strategy in some sender-preferred equilibrium (σ′, τ ′, p′), then the
assessment (σ′, τ ′′, p′), where τ ′′ is obtained from τ ′ by breaking the receiver’s ties in favor of the
highest action in the support of τ ′ is also an equilibrium.
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sender’s ex-ante payoff can be written as

max
B laminar

∑
i∈N

uiµF (Bi)

s.t.
⋃
i∈N

Bi = [0, 1]

µF (Bi ∩Bj) = ∅ for all i ̸= j

γi ≤ E[ω | ω ∈ Bi] ≤ γi+1 for all i ∈ N

Bi ⊆ [0, γi+1] for all i ∈ N

To prove the lemma, it suffices to show that this problem has a solution.

Although an action j may be never recommended, one can still assume that Bj is

nonempty by setting µF (Bj) = 0. Because B is laminar, it is without loss of generality

to assume that for each i ∈ N , Bi is the union of at most n intervals (cf. Observation 1).

Consequently, adding singletons if necessary, one can always set Bi as the union of

exactly n convex sets {Bi,s}ns=1 such that µF (Bi,s′ ∩Bi,s′′) = 0 for all s′ ̸= s′′.

Let Cc([0, 1]) denote the set of closed, nonempty, and convex subsets of [0, 1] en-

dowed with the Hausdorff distance; to simplify notation, we write Cc henceforth. By

Proposition 1 in Ely (2022), Cc is compact; by Tychonoff’s theorem, Cn2

c is compact in

the product topology. The problem above can be transformed to

max
{Bi,s}∈Cn2

c

∑
i∈N

ui

n∑
s=1

µF (Bi,s) (5)

s.t. ∪i,s Bi,s = [0, 1]

µF (Bi′,s′ ∩Bi′′,s′′) = 0 for all (i′, s′) ̸= (i′′, s′′)

µF (∪n
s=1Bi,s) γi ≤

∫
∪n
s=1Bi,s

ω dµF (ω) ≤ µF (∪n
s=1Bi+1,s) γi+1

∪n
s=1 Bi,s ⊆ [0, γi+1]

where the third constraint is equivalent to the conditional mean condition.

Define

D =
{
{Bi,s} ∈ Cn2

c : ∪i,s Bi,s = [0, 1], and µF (Bi′,s′ ∩Bi′′,s′′) = 0 for all (i′, s′) ̸= (i′′, s′′)
}
;

We claim that D is compact. To show this, it is enough to show that D is a closed
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subset of Cn2

c . Take any {Bm
i,s} that converges to {Bi,s} in the product topology,

then Bm
i,s → Bi,s for each i and s. Consequently, because the limit of convergence in

Hausdorff distance is preserved under finite unions,27 ∪i,sB
m
i,s → ∪i,sBi,s. Therefore, if

∪i,sB
m
i,s = [0, 1], it must be that ∪i,sBi,s = [0, 1]. Furthermore, if µF (B

m
i′,s′ ∩Bm

i′′,s′′) = 0

for all m and (i′, s′) ̸= (i′′, s′′), the same argument as the second paragraph in the proof

of Lemma 2 in Ely (2022) shows that µF (Bi′,s′ ∩ Bi′′,s′′) = 0 for all (i′, s′) ̸= (i′′, s′′).

Therefore, if {Bm
i,s} ∈ D for each m and {Bm

i,s} → {Bi,s}, it must be that {Bi,s} ∈ D.

Thus, D is a closed subset of Cn2

c .

Problem (5) is equivalent to

max
{Bi,s}∈D

∑
i∈N

ui

n∑
s=1

µF (Bi,s) (6)

s.t.

(
n∑

s=1

µF (Bi,s)

)
γi ≤

n∑
s=1

∫
Bi,s

ω dµF (ω) ≤

(
n∑

s=1

µF (Bi,s)

)
γi+1 (7)

∪n
s=1 Bi,s ⊆ [0, γi+1] (8)

where constraint (7) supersedes the the third constraint in problem (5) because for any

{Bi,s} ∈ D, µF (Bi′,s′ ∩Bi′′,s′′) = 0 for all (i′, s′) ̸= (i′′, s′′).

By the extreme value theorem, to show that a solution to problem (6) exists, it

suffices to show that (i) the objective function is continuous, and (ii) the constraint set

is nonempty and compact. Clearly, the constraint set is nonempty: for each i ∈ N ,

consider

Bi,1 = Ai, and Bi,s = {γi+1} for all s = 2, . . . , n,

then {Bi,s} is feasible for this problem. Furthermore, by Proposition 1 in Ely (2022),

µF is continuous on Cc, and hence the objective is continuous.

Since D is compact, to show that the constraint set is compact, it suffices to show

that each of the constraints, (7) and (8), defines a closed subset of D. Observe that if

Cm → C and Dm → D with Cm ⊆ Dm for all m, then C ⊆ D.28 Then because the

limit of convergence in Hausdorff distance is preserved under finite unions, if ∪n
s=1B

m
i,s ⊆

[0, γi+1] for each i, it must be that ∪n
s=1Bi,s ⊆ [0, γi+1] for each i. Hence, (8) defines a

closed subset of D.

Next, we show that (7) does the same, which is equivalent to showing that if

27See, for example, Lemma 4.5 in McLennan (2018).
28See, for example, page 15 in Ely (2022).
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{Bm
i,s} → {Bi,s} where {Bm

i,s} ∈ D for each m, then(
n∑

s=1

µF (B
m
i,s)

)
γi ≤

n∑
s=1

∫
Bm

i,s

ω dµF (ω) ≤

(
n∑

s=1

µF (B
m
i,s)

)
γi+1

for all m and i implies that(
n∑

s=1

µF (Bi,s)

)
γi ≤

n∑
s=1

∫
Bi,s

ω dµF (ω) ≤

(
n∑

s=1

µF (Bi,s)

)
γi+1

for all i. Because µF is continuous on Cc,
∑n

s=1 µF (B
m
i,s) →

∑n
s=1 µF (Bi,s) for all i.

Consequently,
(∑n

s=1 µF (B
m
i,s)
)
γi → (

∑n
s=1 µF (Bi,s)) γi, and

(∑n
s=1 µF (B

m
i,s)
)
γi+1 →

(
∑n

s=1 µF (Bi,s)) γi+1 for each i. Therefore, it only remains to show that

n∑
s=1

∫
Bm

i,s

ω dµF (ω) →
n∑

s=1

∫
Bi,s

ω dµF (ω),

which is a consequence of E 7→
∫
E
ω dµF (ω) being continuous on Cc.

To prove this claim, we show that E 7→
∫
E
ω dµF (ω) is both upper- and lower-

semicontinuous. To see that it is upper-semicontinuous, pick any ε > 0, and let E ∈ Cc;
we show that there exists δ > 0 such that for every E ′ ∈ N(E, δ), where N(E, δ) is

the δ-neighborhood of E,
∫
E′ ω dµF (ω) <

∫
E
ω dµF (ω)+ ε. Because E ∈ Cc, there exist

a, b ∈ [0, 1] such that E = [a, b]. The key observation here is that for any E ′ ∈ N(E, δ),

it must be that E ′ ⊆ [a− δ, b+ δ]. Then∫ b+δ

a−δ

ω dµF (ω) =

∫ a

a−δ

ω dµF (ω) +

∫ b

a

ω dµF (ω) +

∫ b+δ

b

ω dµF (ω)

≤ µF ([a− δ, a]) +

∫
E

ω dµF (ω) + µF ([b, b+ δ])

where the inequality holds because ω ∈ [0, 1]. For δ small enough, since µF is absolutely

continuous with respect to the Lebesgue measure,∫
E′
ω dµF (ω) ≤

∫ b+δ

a−δ

ω dµF (ω) <

∫
E

ω dµF (ω) + ε.

Next, we show that
∫
E
ω dµF (ω) is lower semicontinuous, that is, there exists δ > 0

such that for every E ′ ∈ N(E, δ),
∫
E′ ω dµF (ω) >

∫
E′ ω dµF (ω) − ε. Without loss of
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generality, assume δ < (b− a)/2. Consequently, [a+ δ, b− δ] is an interval of positive

measure, and for any E ′ ∈ N(E, δ), [a+ δ, b− δ] ⊆ E ′. Then∫ b−δ

a+δ

ω dµF (ω) =

∫ b

a

ω dµF (ω)−
∫ a+δ

a

ω dµF (ω)−
∫ b

b−δ

ω dµF (ω)

≥
∫
E

ω dµF (ω)− aµF ([a− δ, a])− aµF ([b, b+ δ])

where the inequality follows from the fact that ω ≥ a on [a, b]. Consequently,
∫
E
ω dµF (ω)

is both upper- and lower-semicontinuous, and hence continuous. This completes the

proof. ■

Let B denote a laminar partition associated with a sender-preferred equilibrium; by

the previous two lemmas, such a partition exists. Denote the sender’s ex-ante payoff

from B by V ,

Lemma 4. V > V .

Proof. To prove the statement, we construct an equilibrium partition B = {Bi}i∈N
that yields V (B) > V . For each i ∈ N ∖ {1, n}, let Bi = Ai. Also, for some ε ∈ (0, γ2),

let B1 = [ε, γ2] and Bn = [0, ε]∪An. It is easy to see that {Bi}i∈N is a revelation-proof

partition. Furthermore, E[ω | ω ∈ Bi] ∈ Ai for all i ∈ N∖{n} by construction. Finally,

the function ψ(ε′) := E[ω | ω ∈ Bn] =
∫ ε′

0
ωdF (ω) +

∫
An
ωdF (ω) is strictly decreasing,

continuous and ψ(0) > γn. Consequently, there exists ε > 0 such that ψ(ε) ∈ [γn, 1],

which makes B an obedient partition. By Lemma 1, B is an equilibrium partition; the

sender’s ex-ante payoff in that equilibrium is

V (B) = V + µF ([0, ε])(un − u1) > V ,

which completes the proof. ■

Proof of Part (c). For any V ∈ [V , V ], we construct an obedient and revelation-

proof laminar partition that yields V by “blending” the fully informative partition A
and a sender-preferred laminar equilibrium partition B (which exists by part (b)). For

all z ∈ [0, γn],

• for every i ∈ N such that γi+1 ≤ z, let B̂z
i := Ai;

• if i is such that such that γi ≤ z ≤ γi+1, B̂
z
i := cl(Bi ∖ [0, γi]) ∪ [γi, z];
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• for every i ∈ N such that z < γi, let B̂
z
i := cl (Bi ∖ [0, z]).

For any z ∈ [0, γn], and any i ∈ N , E
[
ω
∣∣ω ∈ Bi

]
∈ Ai implies E

[
ω
∣∣ω ∈ B̂z

i

]
∈ Ai.

Consequently, B̂(z) := {B̂z
i }ni=1 is obedient. It is also revelation-proof because both A

and B are. Finally, because both A and B are laminar, it can be checked using (1)

that B̂(z) is a laminar partition.

Let V (z) denote the sender’s ex-ante payoff from B̂(z): V (z) :=
∑

i∈N ui µF

(
B̂z

0

)
;

because f > 0, V (z) is continuous in z. Since V (0) = V ≥ V ≥ V = V (γn), by the

intermediate value theorem, there exists zV ∈ [0, γn] such that V (zV ) = V . Thus, the

partition B̂(zV ) is an obedient and revelation-proof laminar partition that yields V .

A.1.2 Proof of Theorem 2

Proof of (i). We first prove the following preliminary result.

Claim 7. Let B be a laminar partition associated with a sender- preferred equilibrium,

and let j = min{i : µF (Bi) > 0}. If E[ω |ω ∈ Bj] > γj, then Bj = [0, d] for some

d ≤ γj+1.

Proof. Because B is a laminar partition, Bj must be an interval, and hence one can

write Bj = [bj, bj]. Furthermore, revelation proofness implies that [bj, bj] ⊆ [0, γj+1].

To show that bj = 0, it suffices to show that int (Bj) ∩ co (Bk) = ∅ for all k > j.29

Suppose not, so Bj ⊆ co (Bk) for some k > j. The laminar structure implies that

Bk is the union of at most k closed intervals; let [α, β] and [ζ, η] be an interval such

that β ≤ bj and [α, β] ⊆ Bk; this interval is well-defined because B is laminar and

Bj ⊆ co (Bk). Because E [ω |ω ∈ Bk] = γk and E [ω |ω ∈ Bj] := γS > γj, for small

enough ε > 0, one can find h(ε) such that

E
[
ω
∣∣ω ∈

(
Bk ∪ [bj − h(ε), bj]

)
∖ (β − ε, β]

]
= γk,

and

E
[
ω
∣∣ω ∈ [β − ε, β] ∪ [bj − h(ε), bj]

]
≥ γj.

Now define a new partition B̃ with generic element B̃i by B̃i = Bi if i ̸= j, k, B̃j =

[β − ε, β]∪ [bj − h(ε), bj], and B̃k =
(
Bk ∪ [bj − h(ε), bj]

)
∖ (β − ε, β]. B̃ is obedient by

construction, and it is also revelation-proof because B is; then by Lemma 1, B̃ is an

equilibrium partition. Furthermore, it must be that µF (B̃k) > µF (Bk): this is because

29For a subset S of [0, 1], int (S) denotes the interior of S.

38



by construction, E [ω |ω ∈ Bk] = E
[
ω |ω ∈ B̃k

]
= γk and

∫
B̃k
ω dF (ω) >

∫
Bk
ω dF (ω).

Consequently, the sender’s payoff is strictly higher in this new equilibrium since j <

k, which contradicts the assumption that B is a partition associated with a sender-

preferred equilibrium. ■

We are now ready to prove (i). Recall that a laminar partition is defined by (1).

Because co (Bk) must be an interval for all k, ∪k<i co (Bk) is the union of at most

i− 1 intervals. By Claim 7, since B is associated with a sender-preferred equilibrium,

int (B0) ∩ Bk = ∅ for all k ≥ 2. Thus, for any i ≥ 1, by taking out ∪k<i co (Bk) from

co (Bi), at most max{i− 2, 0} intervals are removed, and hence the remainder, namely

co (Bi)∖∪k<i co (Bk), must be the union of at most max{i− 1, 1} intervals. By taking

closure, Bi is also the union of at most max{i− 1, 1} intervals.

Proof of (ii). Suppose to the contrary that B, a laminar partition associated with

a sender-preferred equilibrium, has E[ω | ω ∈ Bk] > γk for some non-null k > j.

By Lemma 1, B is both obedient and revelation-proof. Let bj := minBj; because

f > 0, there exists x ∈ Bj with x > bj such that E[ω | ω ∈ [bj, x] ∪ Bk] ≥ γk, and

E[ω | ω ∈ Bj ∖ [bj, x]] > γj. Now consider the partition B̃ where B̃j = Bj ∖ [bj, x],

B̃k = [bj, x] ∪Bk, and B̃i = Bi for i ̸= j, k. B̃ is obedient and revelation-proof because

B is, and the sender’s ex-ante payoff from B̃, V (B̃), satisfies

V (B̃)− V =
[
F (x)− F (bj)

]
(uk − uj) > 0,

a contradiction.

Proof of the “Furthermore” statement. Let B be a barely obedient laminar

partition. For convenience, for any Bi ∈ B, denote bi := minBi and bi := maxBi.
30

We first prove the follwoing auxiliary result.

Claim 8. Let B be a barely obedient laminar partition, and let i, j be two unskipped

actions with i < j. Then if µF (co (Bi) ∩ co (Bj)) = 0, then every ω′ ∈ Bj and ω′′ ∈ Bi

satisfy ω′ ≤ ω′′.

Proof of Claim 8. Because µF (co (Bi) ∩ co (Bj)) = 0, either ω′ ≤ ω′′ for every ω′ ∈ Bj

and ω′′ ∈ Bi, or ω
′ ≥ ω′′ for every ω′ ∈ Bj and ω

′′ ∈ Bi. The second possibility, however,

30If Bi = ∅, we let bi = bi = 0.
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cannot be true: by obedience, j < i implies that bj ≤ γi, and E[ω | ω ∈ Bi] ≥ γi.

Consequently, bi > γi ≥ bj, a contradiction. Therefore, it must be that ω′ ≤ ω′′ for

every ω′ ∈ Bj and ω
′′ ∈ Bi. ■

We are now ready to prove the equivalence between revelation proofness and the

condition that maxBi ≤ γi+1 for all unskipped i such that i + 1 either nests i or is

skipped.

Proof of the equivalence. Suppose first that maxBi ≤ γi+1 for all unskipped i such that

i+1 either nests i or is skipped, and we show that for any action i ∈ N , Bi ⊆ [0, γi+1].

Since B is laminar, it is without loss of generality to assume that if action i is skipped,

Bi ⊆ [0, γi+1].

Now suppose i is not skipped. There are two possibilities: either action i + 1 is

skipped or not. If i + 1 is skipped, by assumption bi ≤ γi+1, implying Bi ⊆ [0, γi+1].

If instead i + 1 is not skipped, there are two cases: either Bi ⊆ co (Bi+1) or not. If

Bi ⊆ co (Bi+1), then by assumption bi ≤ γi+1, implying that Bi ⊆ [0, γi+1].

Suppose instead that Bi is not a subset of co (Bi+1), and suppose to the contrary

that bi > γi+1. Because B is laminar, since Bi is not a subset of co (Bi+1) (which means

that co (Bi+1) does not nest co (Bi)), it must be that µF (co (Bi) ∩ co (Bi+1)) = ∅.

By Claim 8, for every ω′ ∈ Bi and every ω′′ ∈ Bi+1, ω
′ ≤ ω′′. This implies that

ω ≥ bi > γi+1 for every ω ∈ Bi+1, violating bare obedience, a contradiction. Thus,

bi ≤ γi+1, which implies that Bi ⊆ [0, γi+1].

For the other direction, it suffices to prove the contrapositive. Note that if the

condition is violated; that is, maxBi > γi+1 for some unskipped i such that i+1 either

nests i or is skipped, implying that Bi is not a subset of [0, γi+1]. Thus, the laminar

partition B must violate revelation proofness. ■

A.2 Proofs and Details for Section 4

We first introduce the notion of a bi-pooling distribution.

Definition 4 (Bi-pooling distribution). A distribution G ∈ MPC(F ) is a bi-pooling

distribution if there exists a collection of pairwise disjoint intervals {(ωi, ωi)}i∈I such

that

• for all i ∈ I, G (ωi)−G (ωi) = F (ωi)− F (ωi) and
∣∣supp (G|(ωi,ωi)

)∣∣ ≤ 2;31

31For any cumulative distribution function H, let H|[c,d] denote the restriction of G to [c, d] ⊆ [0, 1].
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• G|[0,1]∖∪i∈I(ωi,ωi)
= F |[0,1]∖∪i∈I(ωi,ωi)

.

In particular, (ωi, ωi) is called a pooling interval if
∣∣supp (G|(ωi,ωi)

)∣∣ = 1, and it is called

a bi-pooling interval if
∣∣supp (G|(ωi,ωi)

)∣∣ = 2.

We call a bi-pooling distribution GB that solves the commitment problem (3) a

bi-pooling solution.

The following observation is proved useful.

Lemma 5 (Candogan, 2019). Every bi-pooling solution to the commitment problem

satisfies supp (GB) ⊆ [0, γ̃] ∪ {γi}ni=2, where γ̃ ∈ [0, 1] is such that γ̃ ≤ γ for all

γ ∈ supp (GB) ∩ {γi}ni=2.

An important consequence of Lemma 5 is that every signal realization can be iden-

tified by the action it induces. In particular, every x ∈ supp (GB) ∩ [0, γ̃] induces the

lowest unskipped action, and γi induces action i for each i = 2, . . . , n. Moreover, if

a bi-pooling solution is associated with a bi-pooling partition, then Lemma 5 implies

that the partition must be barely obedient.

A.2.1 Proof of Theorem 3

Part (i). By results in Kleiner et al. (2021) and Arieli et al. (2023), the commitment

problem (3) admits a bi-pooling solution.

By Lemma 5, in any bi-pooling solution GB, if supp(GB)∖{γi}ni=2 is nonempty but

not a singleton, there must exist an interval [0, d] on which action 1 is recommended,

and [d, 1] is comprised of pooling intervals and/or bi-pooling intervals; in this case,

[0, d] can be viewed as a pooling interval. Otherwise, [0, 1] comprises pooling and/or

bi-pooling intervals. The fact that every bi-pooling solution GB is associated with a

bi-pooling partition therefore follows from Lemma 4 in Arieli et al. (2023): on every

pooling interval, a single signal realizes, which induces a single action and hence ties to

a single partitional element. On every bi-pooling interval (ω, ω), there exists (q, q) ⊆
(ω, ω) such that one (deterministic) signal realizes when ω ∈ (q, q), and another signal

realizes when ω ∈ (ω, q) ∪ (q, ω), with the latter signal recommending a higher action.

Then [q, q] and [ω, q] ∪ [q, ω] correspond to two partitional elements Bℓ and Bh with

ℓ < h, respectively. This observation and Lemma 5 together imply that the bi-pooling

partition is barely obedient.

To see uniqueness of the barely obedient bi-pooling partition, first note that every

pooling interval necessarily ties to a unique partitional element; hence if a bi-pooling
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solution admits two distinct bi-pooling partitions, B1 and B2, they must differ on a

bi-pooling interval (ω, ω). Then there must exist {Bℓ, Bh} and {B′
ℓ, B

′
h} such that

Bℓ = [bℓ, bℓ], Bh = [ω, bℓ] ∪ [bℓ, ω], B
′
ℓ = [b′ℓ, b

′
ℓ], and B′

h = [ω, b′ℓ] ∪ [b
′
ℓ, ω], with either

b′ℓ ̸= bℓ, or b
′
ℓ ̸= bℓ, or both. Since f > 0 and ω and ω are fixed, either E[ω | ω ∈ Bℓ] ̸= γℓ,

or E[ω | ω ∈ B′
ℓ] ̸= γℓ, or both. A contradiction.

Part (ii). Based on part (i), it suffices to show that the solution to the commitment

problem (3) is unique, and the unique solution is a unique bi-pooling distribution. For

any bi-pooling solution GB, let µi := GB(γi+1) − GB(γi) for each i = 2, . . . , n. If

supp (GB) ∖ {γi}ni=1 = ∅, set µ1 = GB(γ2) and µ̃ = 0; otherwise, let µ̃ = GB(γ̃) and

µ1 = GB(γ2)−µ̃; Lemma 5 then indicates that every bi-pooling solution is identified by

{µ̃}∪ {µi}ni=1. By Lemma D.1 in Candogan (2022), no three elements of the collection

of points {(γi, ui)}ni=1 are collinear implies that any two bi-pooling solutions of problem

(3) induces the same collection of {µ̃}∪{µi}ni=2. Then because every bi-pooling solution

is a mean-preserving spread of F , any two such bi-pooling solutions must be identical.

As noted in Kleiner et al. (2021) and Arieli et al. (2023), every extreme point of the set

of solutions to problem (3) is a bi-pooling solution, and hence the solution to problem

(3) must be a unique bi-pooling solution.

A.2.2 Proof of Proposition 1

Since the bi-pooling partition is barely obedient, the “if” direction follows directly from

Lemma 1. For the other direction, suppose first that a bi-pooling solution GB is imple-

mentable. Because the commitment payoff is an upper bound of equilibrium payoffs,

GB is the PMD induced by a sender-preferred equilibrium (σ, τ, p). By Theorem 3,

GB is associated with a unique barely obedient bi-pooling partition B; an argument

analogous to the one in the proof of Lemma 2 shows that B is revelation-proof.

A.2.3 Proof of Proposition 2

We use the following result due to Arieli et al. (2023) to prove Proposition 2. Say

that {γℓ, γh} is a feasible bi-pooling support for the interval (ω, ω) (or just feasible

for simplicity) if there exists a mean preserving contraction of F |[ω,ω] whose support is
{γℓ, γh}.

Lemma 6 (Arieli et al., 2023). Fix an interval (ω, ω), and let y(γℓ) satisfy E[ω | ω ∈
[ω, y(γℓ))] = γℓ. Then {γℓ, γh} is feasible for the interval (ω, ω) if and only if
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(i) ω ≤ γℓ ≤ E[ω | ω ∈ [ω, ω]] ≤ γh ≤ ω, and

(ii) E[ω | ω ∈ [y(γℓ), ω]] ≥ γh.

Proof of Proposition 2. Suppose to the contrary that there exists a bi-pooling solution

GB that is not implementable. Then by Corollary 1, the bi-pooling partition of GB,

B, must violate the condition therein. First suppose that there exists an unskipped

action i such that bi > γi+1. There are two cases.

Case 1. Bi is an interval; i.e., Bi = [bi, bi]. There are two subcases:

(I) γi−1 ∈ int(Bi).

For z ∈ (γi+1, bi), let h(z) solve E[ω | ω ∈ [bi, h(z)]∪ [z, bi]] = γi+1. By Lemma 6,

for z close enough to bi, {γi−1, γi} is feasible for [h(z), z]. Consequently, the

sender’s payoff on Bi, as a function of z, is

P (z) := ui+1[F (bi)− F (z) + F (h(z))− F (bi)]+[
m(z)− γi−1

γi − γi−1

ui +
γi −m(z)

γi − γi−1

ui−1

]
(F (z)− F (h(z)))

where m(z) := E[ω | ω ∈ [z, h(z)]]. To show that this is a profitable deviation, it

suffices to show that P ′(bi) := limz↗bi
P ′(z) < 0. To this end, we first calculate

P ′(z) =
f(z)

γj − γk

z − h(z)

γi+1 − h(z)
[(ui − ui−1)γi+1 + (ui+1 − ui)γi−1 − (ui+1 − ui−1)γi] .

Letting z ↗ bi, then h(z) ↘ bi, and

P ′(bi) =
f(bi)

γi − γi−1

bi − bi
γi+1 − bi

[(ui − ui−1)γi+1 + (ui+1 − ui)γi−1 − (ui+1 − ui−1)γi] ;

P ′(bj) < 0 if and only if (ui+1 − ui−1)γi − (ui − ui−1)γi+1 − (ui+1 − ui)γi−1 > 0,

and this is equivalent to
ui+1 − ui
γi+1 − γi

>
ui − ui−1

γi − γi−1

,

which is implied by (4).

(II) γi−1 /∈ int(Bi) (and therefore γi−1 ≤ bi).

Define Bε
i = [bi + ε, bi]; for small enough ε > 0, {γi, γi+1} is feasible for Bε

i . Let

m(ε) denote the mean of Bε
i ; note that m(0) = γi. Then the sender’s payoff as a
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function of ε on Bi is

P (ε) :=

[
m(ε)− γi
γi+1 − γi

ui+1 +
γi+1 −m(ε)

γi+1 − γi
ui

]
[F (bi)− F (bi + ε)] + ui−1[F (bi + ε)− F (bi)].

To show that this is a profitable deviation, it suffices to show that P ′(0) :=

limε↘0 P
′(ε) > 0. Algebra reveals that

P ′(ε) = f(bi + ε)

[
ui−1 −

γi+1ui − γiui+1

γi+1 − γi
− (bi − ε)

ui+1 − ui
γi+1 − γi

]
;

consequently, as ε↘ 0,

P ′(0) =
f(bi)

γi+1 − γi
[(γi − bi)(ui+1 − ui)− (γi+1 − γi)(ui − ui−1)] . (9)

Because f(bi) > 0 and γi+1 − γi > 0 by assumption, the sign of P ′(0) is the same

as the sign of term in the square brackets in the right-hand side of (9). Thus,

P ′(0) > 0 if and only if
ui+1 − ui
γi+1 − γi

>
ui − ui−1

γi − bi
.

Because γi+1 < bi, h(γi; γi+1) > bi. Thus, (4) implies the inequality above.

Case 2. There is a partitional element Bj with j < i such that Bj ⊆ co (Bi). In this

case, Bj = [bj, bj], and Bi = [bi, bj]∪ [bj, bi]. WLOG, assume that bi < bj; by Lemma 6,

{γj, γi} is feasible for [bi, bi], and

E[ω | ω ∈ [y(γj), bi]] > γi. (10)

Furthermore, it must be that γi ∈ [bj, bi]: if instead γi ∈ [bi, bj], it must be that γi < γj,

which violates the assumption that j < i.

For z ∈ (γi, bi), let h(z) solve E[ω | ω ∈ [bi, h(z)]∪[z, bi]] = γi. By (10) and Lemma 6,

for z close enough to bi, {γj, γi} is feasible for [h(z), z]. Consequently, one can find a

profitable deviation similar to in Case 1 (I) mutatis mutandis.

Now suppose instead that there exists a pair of partitional elements Bi and Bi+1

with Bi ⊆ co (Bi+1), and γi+1 < bi. Since Bi = [bi, bi], this case is isomorphic to Case

1 when action i + 1 is skipped. As a consequence, we can similarly find a profitable

deviation.
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Therefore, every bi-pooling solution must satisfy the condition in Corollary 1, and

hence implementable. This completes the proof. ■

A.2.4 Proof of Corollary 2

By definition of h(γi; γi+1), when f is increasing, γi+1 − γi ≤ γi − h (γi; γi+1). Then

since γi+1− γi ≤ γi− γi−1, it must be that γi+1− γi ≤ min {γi − γi−1, γi − h (γi; γi−1)}.
Now there are two cases. If ui+1−ui > ui−ui−1, (4) must hold; then by Proposition 2,

every bi-pooling solution can be implemented. If instead γi+1 − γi < γi − γi−1, it must

be that γi+1 − γi < min {γi − γi−1, γi − h (γi; γi−1)}; this inequality and ui+1 − ui ≥
ui − ui−1 together imply (4). Again by Proposition 2, every bi-pooling solution can be

implemented.
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