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Abstract

We study a class of finite-action disclosure games where the sender’s prefer-
ences are state independent and the receiver’s optimal action depends only on
the expected state. While receiver-preferred equilibria in these games involve
full revelation, other equilibria are less well-understood. We show that any equi-
librium payoff can be obtained with a disclosure strategy corresponding to a
partition with a laminar structure that allows pooling nonadjacent states. In
a sender-preferred equilibrium, such a structure balances inducing more sender-
favorable actions and deterring deviations. Leveraging this insight, we identify
conditions under which the sender does not benefit from commitment power and

apply these results to study influencing voters and selling with quality disclosure.
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1 Introduction

When economists think of disclosure games, they usually think of unraveling (e.g.,
Grossman, 1981; Milgrom, 1981). Specifically, if the sender can credibly prove that the
state is highly favorable, he reveals it to induce a higher action from a receiver. Once the
most favorable states are disclosed, slightly less favorable states must also be revealed
to avoid being mistaken for worse ones, and this reasoning continues recursively until all
states are revealed. This full revelation result, however, hinges on a crucial assumption:
the receiver’s action space is sufficiently flexible, meaning that she can adjust her action
continuously so that any marginal improvement in belief leads to a strictly higher
action.

Nevertheless, this flexibility assumption often fails in settings where the receiver
chooses among finitely many actions, such as a consumer deciding among a few prod-
ucts or product versions, an employer choosing among different position levels, or a
policymaker deciding between a few policy alternatives. In such cases, the receiver
cannot finely adjust her action in response to small changes in her belief. Previous
studies (e.g., Giovannoni and Seidmann, 2007; Titova and Zhang, 2025) show that this
discreteness may prevent full unraveling and allow the sender to withhold some infor-
mation, i.e., create scope for pooling. Yet little is known about exactly which states
are pooled together in equilibrium, or about the full limits of what can be achieved
through verifiable disclosure.

In this paper, we study a disclosure game in which the receiver’s preferred action
is increasing in the expected state. The only essential difference from Milgrom (1981)
is that the receiver’s action space is finite. We characterize the equilibrium payoff set,
study the sender-preferred equilibrium payoff, and identify sufficient conditions under
which the commitment payoff is achieved with verifiable disclosure. We illustrate our

results with a motivating example.

Example. To illustrate our model and main results, consider a seller (he) promoting
a product to a buyer (she) who chooses whether to buy nothing (action 1), buy the
product (action 2), or buy the product bundled with an add-on (action 3). The play-
ers have a common prior that the product quality is uniformly distributed on [0, 1].
The buyer’s payoff depends on the posterior expectation of product quality w and is
such that she optimally buys the bundle if E[w] € [3,1], only the standalone product

if Elw] € [1, 3], and nothing otherwise. The seller’s profit is 0 if he sells nothing, 1



if he sells the product with the add-on, and p € [0, 1] if he sells only the product.
To persuade the buyer, the seller can disclose a piece of hard evidence about product
quality after privately observing it. In particular, he can send a message corresponding
to any nonempty closed subset of [0, 1] containing the true quality w. We will focus on
partitional disclosure strategies associated with some (ordered) partition { By, By, Bs}
of [0,1] such that when the product quality is w € B;, the seller sends a message B;.
The interpretation is that the seller discloses which B; the quality belongs to and rec-
ommends the buyer to take action 7. Such a partition is an equilibrium partition if
and only if it is obedient for the buyer so that she is willing to follow the recommen-
dation, and revelation-proof for the seller so that he is almost never willing to deviate
by revealing the true quality.

Before discussing the equilibria of the game, note that the seller’s equilibrium payoft
is bounded from above by his commitment payoff in this environment, that is, his
maximal expected payoff in the case when he can commit to disclose information about
w using any experiment. The commitment problem can be seen as a relaxation of the
problem of maximizing seller’s payoff across equilibria because the former does not
require the disclosure strategy to be revelation-proof. Therefore, if the commitment
payoff is attainable in some equilibrium, this equilibrium must be a seller-preferred
equilibrium of the game.

Suppose first that p = 0. Given the observation above, we start by identifying the
commitment solution. Because p = 0, the action space is effectively binary and the
seller is maximizing the probability of selling the bundle. Every commitment-optimal
experiment corresponds to a partition given by By = [0, %], B, = @, By = [£,1] so that
the buyer is indifferent between buying and not buying the bundle following message
Bjs. It is easy to check that this partition is revelation-proof, because almost no seller
type in B; can induce any action higher than 1 by deviating. Therefore, there is a
seller-preferred equilibrium that attains the commitment payoff.

Suppose next that p = 0.5. In this case, there are three non-trivial actions available
to the buyer, and the seller is facing a trade-off between the likelihoods of selling the
standalone product and selling the bundle. It turns out that the unique commitment-
optimal partition is given by By = [0, 1], B2 = [35, 15}, Bs = [3, 5] U [1, 1]. Note that
in contrast to the case of p = 0, in this case the optimal partition is not monotone
in the sense that not every element is an interval. Instead, it is associated with a

class of bi-pooling distributions of posterior means which are known to be optimal in
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Figure 1. Commitment-optimal and sender-preferred equilibrium partitions in the
example. The dashed lines are the (conditional) means of the partitional elements.

a general class of linear persuasion problems (Kleiner, Moldovanu, and Strack, 2021;
Arieli, Babichenko, Smorodinsky, and Yamashita, 2023). Such bi-pooling partitions
generalize monotone partitions by allowing pooling of non-adjacent types as follows.
Each partitional element B; can either be an interval, or consist of two intervals and
“nest” a unique another interval B;, in the sense that co(B;) D B;. To verify that
this partition is revelation-proof, it is sufficient to check that almost no type in By can
deviate by revealing their type and convincing the buyer to buy the bundle. Indeed,
since the highest type % in By is below the threshold % of selling a bundle, this partition
is an equilibrium partition.

Suppose next that p = 0.6. The unique commitment-optimal partition can be shown
to be given by a bi-pooling partition By = [0,3],B; = [¢1, 2], Bs = [5, 1] U [, 1].
Compared to the previous case, the profit from selling the standalone product in-

creases and the set B, of types selling the standalone product dilates. In particu-



lar, there are now some types in B, which are above the bundle threshold of % for
whom revealing their type would be a profitable deviation. Therefore, the above parti-
tion is not revelation-proof and the maximal equilibrium seller profit in the disclosure
game is strictly below the commitment benchmark. In this case, the seller-optimal
equilibrium turns out to be associated with another bi-pooling partition given by
By = [0,35],B, = [1,3],B; = 252, U [2,1]. To get some intuition why this
is the best the seller can do in an equilibrium, note that this partition satisfies the

following constraints. First, similarly to the commitment solution, the buyer’s pos-

terior means following messages By and Bjs equal, respectively, Ew | w € Bs] =

and Elwlw € Bs] = 2, in other words the obedience constraint is binding and, as

result, the partition is barely obedient. Second, in contrast to the commitment solu-
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tion, the upper bound of Bs coincides with the threshold %, implying that the seller
revelation-proofness constraint is binding.

Our model generalizes this example to any absolutely continuous prior distribution
of the state, an ordered finite action space, and monotone preferences of the players.!
Our first main result, Theorem 1, shows that any equilibrium payoff of the sender can
be obtained in a laminar partitional equilibrium, i.e., one that is associated with a
laminar partition. The laminar property of a partition, introduced in Candogan and
Strack (2023), generalizes the bi-pooling property known to characterize optima under
sender’s commitment. In a bi-pooling partition, each element’s convex hull may nest
at most one other lower-indexed element, while in a laminar partition, it may nest
any number of lower-indexed elements. We prove this result by showing that laminar
partitions are most revelation-proof among obedient partitions in the sense that any
equilibrium partition can be transformed into a laminar equilibrium partition with the
same sender payoff.

Our next result, Theorem 2, establishes the properties of sender-preferred equi-
librium partitions. First, sender-preferred (laminar) equilibrium partitions are barely
obedient in the sense that they maximally exploit the receiver’s obedience. This fea-
ture is common with the commitment solution: if the sender’s payoff is maximized,
then the obedience constraint must be binding. Second, we provide a necessary and
sufficient condition for a barely obedient laminar partition to be revelation-proof. In
particular, we show that instead of verifying revelation proofness for all states, one can

consider a particular subset of on-path actions and then verify it for the highest state

'The players have monotone preferences if the sender’s payoff is strictly increasing in the receiver’s
action and the receiver’s preferred action is increasing in the expected state.
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in which each of those actions is recommended.

Our remaining set of results discusses the attainability of the commitment payoff in
the disclosure game. First, every bi-pooling solution of the commitment problem pins
down a barely obedient bi-pooling (and, therefore, laminar) partition that is most re-
sistant to violations of revelation proofness (Theorem 3, Proposition 1). Consequently,
the revelation proofness of that partition determines whether the commitment payoff
can be achieved in a disclosure game. With binary actions, Titova and Zhang (2025)
show that every bi-pooling commitment solution is implementable. For three or more
actions, our Proposition 2 shows that every bi-pooling commitment solution is imple-
mentable if the sender’s utility is sufficiently convex in receiver’s action cutoffs. In
the above example with three actions, the commitment payoff is attained when p is

sufficiently low, which corresponds to the seller’s utility being sufficiently convex.

Implications. The results discussed above have several implications. In the existing
literature, pooling nonadjacent states is typically attributed to the presence of the re-
ceiver’s private information.? The laminar structure provides an alternative rationale
for pooling nonadjacent states, suggesting it could be a more general and robust fea-
ture that does not have to depend on the interaction of multiple information sources.
Moreover, the coexistence of equilibria with distinct payoffs and simple messages may
explain the diversity of disclosure policies observed in practice. This also suggests that
focusing exclusively on the fully revealing outcomes in policy debates need not always
be appropriate, especially when there is a small number of actions. Finally, this paper
contributes to the ongoing debates over whether disclosure should be mandated. Our
results identify communication environments where the sender can gain significantly
by pooling a substantial portion of low states with high states. In such contexts, from
the receiver’s perspective, the advantages of mandatory disclosure may outweigh the

potential shortcomings of such a policy.

Applications. We apply these insights to study selling with quality disclosure and
influencing voters. In the former setting, Milgrom (1981) shows that when the buyer

can purchase any fraction of the product, unraveling takes place and every equilibrium

2This is documented in various contexts, such as signaling games (e.g., Feltovich, Harbaugh, and
To, 2002), disclosure games (e.g., Harbaugh and To, 2020), information design (e.g., Guo and Shmaya,
2019; Candogan and Strack, 2023), and in empirical studies (e.g., Bederson, Jin, Leslie, Quinn, and
Zou, 2018).



features full revelation. If the buyer is restricted to buying integer units, however, we
show that the seller may be able to achieve the same outcome as under commitment.
In the second application, we consider an expert who discloses verifiable information
to a group of voters in an amendment voting setting; the voters choose from three al-
ternatives: the amended bill, the unamended bill, and the status quo. We demonstrate
that the expert can be hurt even if, all else equal, all voters become more inclined

toward the expert’s most preferred alternative.

Related literature. This paper belongs to a growing literature that characterizes
equilibrium payoff set in disclosure games.> The most closely related paper is Titova
and Zhang (2025), which studies a more general disclosure game with a finite number
of receiver actions. We specialize their model by assuming the state space is the unit
interval and the receiver has monotonic preferences that depend only on the expected
state. These assumptions allow us to provide a characterization of a sender-preferred
equilibrium, identify the limits of verifiable communication, and establish sufficient con-
ditions on model primitives for the sender to achieve the commitment payoff. While we
focus on environments in which the receiver’s action set is more limited than in Gross-
man (1981) and Milgrom (1981)—our receiver chooses from a finite set of actions—Alj,
Kleiner, and Zhang (2024) study settings with greater flexibility, where full revelation
prompts an action that makes the sender no better off than inducing any other be-
liefs. Consequently, revelation proofness is not a concern. They provide conditions
under which the sets of equilibrium payoff profiles are virtually the same as the set of
achievable payoff profiles under commitment. Gieczewski and Titova (2025) consider
disclosure games with a general message mapping, propose an equilibrium selection
criterion related to neologism-proofness, and characterize the sender’s ex-ante payoff
under this criterion when there is access to sufficiently rich stochastic evidence.*
Beyond verifiable disclosure, our work also contributes to the growing recent lit-
erature on the possibility of attaining commitment payoff without full commitment
in other communication environments, for example, under cheap talk (Lipnowski and
Ravid, 2020; Lipnowski, 2020), repeated cheap talk (Best and Quigley, 2023; Kuvalekar,
Lipnowski, and Ramos, 2022; Mathevet, Pearce, and Stacchetti, 2022; Pei, 2023), infor-

3Disclosure games were introduced in Grossman and Hart (1980), Grossman (1981) and Milgrom
(1981). For surveys of this literature, see Milgrom (2008), Dranove and Jin (2010), and Ben-Porath,
Dekel, and Lipman (2025).

4«Stochastic evidence” means that the sender’s available messages depend on both the state and
chance. In our game, however, the set of available messages is determined solely by the state.



mation design with privately (and fully) informed sender (Perez-Richet, 2014; Koessler
and Skreta, 2023; Zapechelnyuk, 2023), a possibility to covertly revise a message from
an experiment (Min, 2021; Lipnowski, Ravid, and Shishkin, 2022), an ability to covertly
revise an experiment without affecting the marginal distribution over messages (Lin
and Liu, 2024), costly misreporting (Guo and Shmaya, 2021; Nguyen and Tan, 2021),
and sender-worst equilibrium selection (Lipnowski, Ravid, and Shishkin, 2024). In con-
trast, we study a one-shot communication game with verifiable information and absent
any commitment.

Our paper is also closely related to Candogan and Strack (2023) which studies lin-
ear persuasion with one or more privately informed receivers. In that paper, laminar
partitions arise as a solution to a standard linear maximization problem with a mean-
preserving contraction constraint (Kleiner et al., 2021; Arieli et al., 2023), in which re-
ceivers’ incentive constraints are written as additional moment conditions. In contrast,
we show that laminar partitions are ones that are most likely to be revelation-proof;

yet, the revelation proofness constraint cannot be written as a moment condition.

2 The Model

We consider the following disclosure game between the sender (he) and the receiver
(she).® The state space is 2 = [0, 1], and the common prior F' admits a strictly positive
density f; we let ur denote the probability measure induced by F'. First, the sender
learns the state. Then, the sender communicates with the receiver using verifiable
messages. Specifically, the sender’s message space in state w € Qis M(w) :={m € C :
w € m}, where C is the collection of all nonempty closed subsets of [0, 1]. Finally, the
receiver observes the message, forms a posterior belief, and takes an action.

The receiver’s action space is N = {1,...,n}, where n > 1. The receiver’s optimal
action depends only on her posterior mean, denoted by x € [0,1]. We assume that the
receiver’s preferences are monotone in the sense that action ¢ is optimal if and only if
T € [V, Vis1] = A; for some cutoffs 0 = v, < 5 < --+ < Y41 = 1.7 We also assume

that the sender’s state-independent payoff u; from receiver taking action ¢ is strictly

50ne can also interpret these models as disclosure games where the sender has access to stochastic
evidence.

6We model (verifiable) disclosure the same way as in the seminal papers of Grossman and Hart
(1980), Grossman (1981), and Milgrom (1981).

"One interpretation is the the receiver wants to match the state but is constrained by the number
of available actions.



increasing in 4.5 Without loss, we normalize u; = 0. Finally, let

w; if & € [y, vig1) for some i € N\ {n},
v(x) =

Unp, lf WS h/na rYn—i—l]

denote the sender’s value function, which maps the receiver’s posterior mean to the

highest attainable sender payoff. By construction, v(x) is upper semicontinuous.

We focus on perfect Bayesian equilibria of the disclosure game. An assessment is a
triple (o, 7, p), where o : Q@ — AC is the sender’s strategy, 7 : C — AN is the receiver’s
strategy and p : C — A(Q) is the receiver’s belief system.’ An assessment (o, 7,p) is
an (perfect Bayesian) equilibrium if:

1. for every w € §, o(w) is supported on arg max,ecnr(w) Y _;en 7@ | M)Us;

2. foreachmeC, 7(i|m) >0 = [ywdp(w|m) e A;

3. p is obtained from F' given ¢* using Bayes rule;

4. for every m € C, supp(p(m)) C m.

In words, the first condition requires that the sender chooses verifiable messages
that maximize his expected payoff. Second, the receiver chooses an action that is
optimal given her posterior mean. Third, the receiver uses Bayes rule to to calculate
the posterior from the prior given the sender’s strategy. Finally, the receiver’s belief
system is consistent with disclosure: she deems impossible any state in which the

observed (on- or off-path) message is not verifiable.

3 Equilibrium Analysis
Partitions

We begin analysis by introducing the notion of a partition of the state space and its
key properties. A sequence B := {B;}ieny C C of closed subsets of [0,1] is a (ordered)
partition if (J,.ny Bi = [0,1] and pp (B; N B;) = 0 for all 4,5 € N. Note first that our
partition is an ordered sequence, rather than a collection of sets. This is convenient

because the receiver’s action set is ordered. Second, the partition elements are closed

8We use “increasing,” “smaller,” and “greater” in the weak sense: “strictly” will be added whenever
needed.

9For a compact metric space Y, let AY denote the set of all probability measures on the Borel
subsets of Y. Endowing C with the Hausdorff distance, it is a compact metric space.



sets that may have a non-empty intersection which, however, must have zero measure.
Partitions are useful in describing certain types of on-path behavior. We say that

an assessment (o, 7,p) and a partition B are associated if for each i € N:

(a) 0(B; |w)=1(w e Biand w ¢ B;y1 U...UB,);

(b) 7(i | Bi) = 1;

(c) p(- [ Bi) = pr(- | By).
In an assessment associated with a partition B, the sender’s strategy is to reveal which
element of the partition the state belongs to by sending message B; when w € B;.*°
Such a message can be interpreted as a recommendation for the receiver to choose action
1. Then, the receiver’s strategy is to always follow the recommendation. Finally, the
receiver’s posteriors on the path are calculated using Bayes rule. Note that a partition
uniquely defines the on-path behavior of the players: if a partition is associated with
multiple assessments, all of these assessments differ in receiver’s off-path beliefs and
actions only. If an assessment (o, 7, p) associated with a partition B is an equilibrium,

then we call (o, 7,p) a partitional equilibrium (PE) and B an equilibrium partition.

The following two properties are necessary and sufficient for B to be an equilibrium

partition:!!

Definition 1. A partition B is
e obedient if Ejw | w € B;] € A; for each i € N.
e revelation-proof if w € B; implies w € A; U...UA; = [0, 7;41] for each i € N.

In words, obedience requires that the receiver indeed prefers to take action ¢ when
she learns that w € B;, i.e., after message B;. Revelation proofness, roughly speaking,
ensures that the sender does not have profitable deviations toward fully revealing the
state. Indeed, in the disclosure game, the sender has an option to fully reveal the state
by sending message {w} with probability one, thus convincing the receiver to take the
action that she would take knowing w. Thus, if w € B;, i.e., the partition prescribes
that the receiver takes action ¢ when the realized state is w, then the receiver prefers
to take at most action ¢ when fully informed.

Next, we define the following structural property of partitions. Let cl(-) and co(-)

denote the closure and the convex hull, respectively.

10We assume that if w is in multiple partition elements, then the sender sends the highest one.

"This result was first shown in Titova and Zhang (2025) for a disclosure game with a slightly
different message space. We formulate and prove this result for our disclosure game in Lemma 1 in
the appendix.



Definition 2. A partition B is laminar if for each i € N

B, = (co(BZ-)\ |Jeo (Bj)) . (1)

j<i

If an equilibrium is associated with a laminar partition B, we call this equilibrium a

laminar PE.

The intuitive interpretation of the laminar property is that each element B; either
has no “gaps” and is therefore an interval, or it has “gaps” that belong to lower-indexed
partitional elements By, ..., B;_; only. This implies that for each pair B; and B; with
i > j, the convex hull co(B;) either nests or has a null intersection with co(B;)."
When co(B;) D co(B;), we say that action ¢ nests action j. We illustrate this intuition
in Figure 2.

The following observation is a direct consequence of the definition of a laminar

partition.

Observation 1. If B is a laminar partition, then each B; is either an empty set or a

union of at most 1 intervals.

i m 2 p S
By | By

(a) Only By has gaps but they belong to (b) Bs has a gap that belongs to the
the lower-indexed By and Bs. higher-indexed By.

Figure 2. A laminar partition in panel (a) and a non-laminar partition in panel (b).

One prominent example of an obedient and revelation-proof laminar partition is

A = {A;}ienv = {[7i, Vis1] bien, which we will call the fully informative partition. Note

that while A is not fully revealing, it provides the minimal information necessary for

the receiver to take her complete-information-optimal action in each state.

12In combinatorics, a laminar set family has each pair of elements either nested or disjoint. We
borrow the term from Candogan and Strack (2023) where the definition of a laminar partition is similar
to ours but allows for any nesting partial order. This is essentially equivalent for finite partitions, in
the sense that our partition comes with an exogenous linear order that must complete the nesting
partial order.
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Equilibrium Payoff Set

Our first result characterizes equilibrium ex-ante payoffs of the sender in terms of

obedient and revelation-proof laminar partitions. We say that an equilibrium is sender-

preferred if it yields the highest ex-ante payoff for the sender across all equilibria.

Analogously, we refer to the ex-ante payoff-minimizing equilibrium as sender-worst.

Theorem 1. (a) There exists a sender-worst equilibrium that is associated with the
fully informative partition A and yields V =Y.\ pr(A;)u;.
(b) There exists a sender-preferred equilibrium that is associated with an obedient and
revelation-proof laminar partition and yields V > V.

(¢) For any V € [V, V], there exists an equilibrium associated with an obedient and

revelation-proof laminar partition.

We provide the intuition for Theorem 1 below. Part (a) is straightforward: as in
most disclosure games, there exists an equilibrium in which the receiver acts as if she is
fully informed. In our setting, that equilibrium is associated with the fully informative
partition A. The sender’s ex-ante payoff cannot fall below V', or else the sender would
have a profitable deviation toward fully revealing the state in a positive measure of
states.

The key step to prove part (b) is showing that for any equilibrium partition there
exists an equilibrium laminar partition that induces the same posterior mean distribu-
tion (PMD), and hence yields the same ex-ante payoff to the sender. We first observe
that any partition induces a PMD with support on at most n points (posterior means);
using the techniques from Candogan and Strack (2023), we show that any such PMD
can be induced by a laminar partition. Then, we further show that if a PMD is in-
duced by an obedient and revelation-proof partition, then the laminar partition that
induces the same PMD is guaranteed to be obedient and revelation-proof. In that
sense, laminar partitions are the most revelation-proof partitions.

We illustrate the intuition behind laminar partitions being the most revelation-
proof ones in Figure 3 using the simplest case when n = 2. Consider two partitions,
B (laminar) and W (non-laminar) that induce the same posterior mean distribution
and whose corresponding elements have the same prior mass; that is, Ew | w € B;] =
Elw | w € W;] and uo(B;) = po(W;) for all i € N. Since B is laminar, its lowest-indexed
element Bj is an interval. If W] is not interval, the only way to match B;’s prior mass

and expectation is to have max B; < max Wj. Consequently, if WV is revelation-proof

11
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Figure 3. Two partitions, B (laminar) and W (non-laminar) that induce the same
posterior mean distribution and whose corresponding elements have the same prior
mass. Whenever W is revelation-proof, so is B.

(which in the case of two actions reduces to max W; < 73), then so is B.

In a sender-preferred equilibrium, the receiver breaks the ties in favor of the sender,
so a single action is taken with probability one in each state. Therefore, every sender-
preferred equilibrium is payoff equivalent to a partitional equilibrium, 7’th element of
the partition contains states in which action the receiver takes action i. Consequently,
to find a sender-preferred equilibrium, it suffices to focus on laminar partitional equi-

libria. A sender-preferred laminar PE is associated with a partition that solves

ieN (2)
subject to B is an obedient and revelation-proof laminar partition.

We show that Problem (2) admits a solution,'® which implies that a sender-preferred
equilibrium exists. To show that V' > V, we construct an obedient and revelation-proof
(and hence equilibrium) laminar partition that yields a strictly higher payoff than V.
For example, we could take the fully revealing partition {[y;,Vi+1]}ien and “move”
the interval [0,¢] from the first element of the partition to the n-th one. If € > 0 is
sufficiently small, the resulting partition would remain obedient, revelation-proof and
laminar, but the sender’s ex-ante utility in the associated equilibrium would be strictly
higher than V. Therefore, sender’s ex-ante payoff in his most preferred equilibrium
must also exceed V.

To prove Part (c), we show that for any payoff between V and V there exists

an laminar equilibrium partition that blends the sender-worst (fully informative and

13The existence of a solution follows from the extreme value theorem. To apply it, we endow
the space of laminar partitions with a topology that makes the sender’s payoff continuous and the
constraint set compact.

12



laminar) partition A and the sender-preferred laminar equilibrium partition B that

yields that payoff.

Sender-preferred Equilibrium

Next, we characterize the sender-preferred laminar partitional equilibrium. We say
that action ¢ is skipped in partition B if B; is a null set and unskipped otherwise. We
refer to a partition B as barely obedient if Elw | w € B;] = ~; for all unskipped i € N,

except the lowest.

Theorem 2. There exists a sender-preferred laminar equilibrium partition B such that
(i) B; is the union of at most max{i — 1,1} closed intervals for alli € N, and (ii) B
18 barely obedient. Furthermore, a barely obedient laminar partition is an equilibrium
partition if and only if max B; < 7,11 for any unskipped © > 1 such that i + 1 either

nests 1 or is skipped.

Theorem 2 characterizes the solution to Problem (2), which is an obedient and
revelation-proof laminar partition that maximizes the sender’s ex-ante payoff. Condi-
tion (i) follows from laminarity of B. First, we find that B; = [0,d] for some d < 7,44
for the lowest unskipped action j. That is, the lowest unskipped action is an interval
that is not in the convex hull of any other partitional elements. Then, each partitional
element with index & > 2 must be a union of at most k£ —1 intervals by the definition of
a laminar partition. Next, B must be barely obedient; otherwise, one could pool addi-
tional low states with high states without violating obedience or revelation-proofness,
thereby obtaining an equilibrium with a strictly higher ex-ante sender payoff. Specif-
ically, if 7 is the lowest unskipped action, one can reassign a subset of B; of strictly
positive measure to By for some k > j.

Next, revelation proofness is equivalent to max B; < ;.1 for each action 7. The
second part of Theorem 2 shows that for a barely obedient laminar partition, this
constraint is only binding for an action in two specific scenarios, illustrated in Figure 4:
either the next-highest action is skipped, or the action’s corresponding partitional
element is nested within the convex hull of the partitional element for the next-highest
action. In all other instances, revelation proofness is automatically satisfied. This
finding further emphasizes that the laminar structure makes revelation proofness easier
to fulfill.

As in Candogan and Strack (2023), the laminar structure emerges in a sender-

preferred equilibrium of our game due to incentive constraints. In Candogan and
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BS | | gB

0 V2 3 1 0 73 1
(a) If action 2 is skipped and vo < max By,  (b) If v3 < max By and co(Bz) C co(Bs3),

then full revelation induces the higher skipped then full revelation induces the higher action
action 2 for all w € [y1,max By) C Bj. 3 for all w € [y2, max By) C Bs.

Figure 4. Violations of revelation proofness ruled out in Theorem 2.

Strack (2023), where the receiver is privately informed, it serves to prevent the receiver
from misreporting her private information. In our setting, it instead optimally balances
the trade-off between deterring the sender’s deviations and inducing the most desirable
action distribution.

As discussed after Theorem 1, laminar partitions are the most revelation-proof
among all obedient partitions. However, interval partitions—a special case of laminar
partitions—often fail to be sender-preferred equilibrium partitions. This underscores
the importance of pooling nonadjacent states in inducing the most desirable distribu-
tion over actions subject to obedience and revelation proofness. To illustrate, recall
our introductory example with p = 0.6. The interval partition that generates the
highest sender’s ex-ante payoff is given by Bf = [0,1], B = [1,3], B = [2,1]. Since
Elw|w e Bl >y = %, we can pool the states from the top of Bf with B, until the
partition becomes barely obedient. This process results in yields a sender-preferred

equilibrium partition By = [0, 3_4‘/5], By =1[1,%],Bs = [3_4‘/?’, U3, 1]

4 When Is Commitment Payoftf Achievable?

While the extent to which the sender benefits from verifiable communication depends
on the specific parameters, an upper bound on the sender’s payoff is given by his
commitment payoff; i.e., his payoff when he can commit to what messages to send in
each state. In this section, we identify conditions under which the sender can attain

his commitment payoff in an equilibrium of the disclosure game.

4.1 Commitment Benchmark

We start by introducing the commitment problem, or information-design problem, as

a benchmark. In this problem, the sender can commit to any experiment that reveals
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information about the state. An experiment is a mapping x: [0,1] — A(S), where
S is a sufficiently rich signal space. For each state w € [0, 1], a signal s € S realizes
according to x(w). Because the receiver’s optimal action only depends on the expected
state, it is without loss to restrict attention on the class of experiments where S = [0, 1],
and each s € S is calibrated to equal the induced posterior mean: s = Elw | s].
Such a calibrated experiment x induces the posterior mean distribution with a CDF
G(x) = fy Jo dx(slw)dF(w).

It is well known that a posterior mean distribution G is induced by some experiment
if and only if G is a mean-preserving contraction of the prior CDF F.** Consequently,
the commitment problem can be stated as a maximization of the expected value v with
respect to the PMD:

max )/0 v(x)dG(z), (3)

GEMPC(F

where MPC(F) is the set of all mean-preserving contractions of . We call any solution

to problem (3) a commitment solution, and call the value of problem (3) the com-

mitment payoff. Clearly, the commitment payoff is an upper bound of the sender’s

equilibrium payoff in the disclosure game.
Finally, we say that a commitment solution G is implementable with verifiable

messages, or just implementable, for short, if there is an equilibrium in which the

sender’s strategy induces a distribution of the receiver’s posterior means G.

We say that an experiment Y is associated with a partition B if it maps almost each
w € B; into the degenerate distribution centered on E[w | w € B;]. In other words,
such an experiment discloses only which element of the partition the state belongs to.
In this case, we also say that the induced posterior mean distribution G is associated
with this partition.

Next, we define a refinement of the laminar property which will be key for optimality

under commitment.

Definition 3. A laminar partition is a bi-pooling partition if every partitional element

B; is either an interval, or there exists a unique j € {0,...,n — 1} such that j < i and
Bj g CO(BZ‘).

While laminar partitions allow any B; with j < 4 to be nested within co(B;),

14Gee, for example, Gentzkow and Kamenica (2016) and Kolotilin (2018). A distribution G €
A([0,1]) is a mean-preserving contraction of F' if [ G(s)ds < [ F(s)ds for all « € [0,1], where the
inequality binds at =z = 1.
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By | By []
Bl | Bl Q |
0 1 0 1
(a) Bi, Bs, and Bs are intervals, and (b) By is not an interval, and
co (By) only contains Bs. By, B3 C co(By).

Figure 5. A bi-pooling partition in panel (a) and a laminar partition that is not a
bi-pooling partition in panel (b), which is the same as that in Figure 2a.

bi-pooling partitions allow only for a single such B; to be nested within co(B;) (see
Figure 5).

The following result regarding bi-pooling partitions is a direct consequence of results
in Kleiner et al. (2021), Candogan (2022), and Arieli et al. (2023). Say that the
communication environment is generic if no three elements of the collection of points

{(7i,u;) }ien are collinear.

Theorem 3.
(i) There exists a commitment solution associated with a unique barely obedient bi-
pooling partition.

(ii) For generic communication environments, the commitment solution is unique.

Theorem 3 indicates that, despite the simplicity of bi-pooling partitions, there
always exist a commitment solution associated with a bi-pooling partition. Moreover,
under mild conditions, the unique commitment solution is associated with a bi-pooling

partition.

4.2 Characterizing Implementability

The following result characterizes the implementability of a commitment solution as-

sociated with a bi-pooling partition.

Proposition 1. Let G be a commitment solution associated with a bi-pooling partition

B. Then, G is implementable if and only if B is revelation-proof.

It follows directly from Theorem 3 and Proposition 1 that in a generic communica-
tion environment, the unique commitment solution is implementable if and only if the

associated bi-pooling partition is revelation-proof.
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The “if” part of Proposition 1 is a direct consequence of Theorem 2 in Titova and
Zhang (2025), which states that for a partition associated with a commitment solution,
implementability is equivalent to revelation proofness. Our primary contribution in
Proposition 1 is to show that among all sender strategies that induce a commitment
solution, the one associated with a bi-pooling partition has the best shot at being an
equilibrium strategy. Roughly, this stems from the fact that bi-pooling partitions are
a special case of laminar partitions, which exhibit a similar property.

Proposition 1 is useful in that it suggests a “guess and verify” approach for find-
ing the sender-preferred equilibrium. First, one finds the commitment solution using
standard information design methods. Second, one identifies the associated bi-pooling
partition. If this partition proves to be revelation-proof, then the sender-preferred
equilibrium has been successfully identified.

The next result, which is a corollary of Proposition 1 and Theorem 2, goes one
step further: it reveals the exact features of bi-pooling partitions that fail revelation

proofness and hence prevent the commitment solutions from being implementable.

Corollary 1. Let G be a commitment solution associated with a bi-pooling partition B.
Then, G is implementable if and only if B is such that max B; < 7,41 for all unskipped
1 such that i + 1 either nests i or is skipped.

Compared to the definition of revelation proofness, the two conditions in Corollary 1
are easier to verify when determining whether a commitment solution is implementable.
They also allow us to identify sufficient conditions under which commitment has no
value in Section 4.3.

To illustrate this result, recall our introductory example with A = {1,2,3}, u; =
0,up = p,uz = 1, 7 = %,73 = %, and uniform F. When p = 0, there is a unique
commitment solution associated with a bi-pooling partition given by B; = [0, %], By =
g, By = [%, 1]. Because this partition is monotone, no action is nested. As for con-
dition (i), note that action 2 is skipped and action 1 is the highest unskipped action
below. Therefore, (i) is satisfied because max By = % < % = 7. In other words, the
commitment-optimal partition is revelation-proof because the sender cannot induce an
action higher than 1 by revealing themselves in any state in B;.

When p = 0.5, there is a unique commitment solution associated with a bi-pooling
partition given by By = [0, 7], B2 = [, 15], Bs = [}, 1) U [15. 1]. Because no action is
skipped, (i) is trivially satisfied. As for condition (ii), note that By is nested by co(Bs).

Therefore, (ii) is satisfied because max By = 1§ < 3 = 7.

17



Proposition 1 and Corollary 1 may have created a feeling that implementing a com-
mitment solution associated with a bi-pooling partition is relatively simple: one only
needs to ensure that no action is recommended more often than revelation proofness
allows. Indeed, when the receiver is choosing between two actions, Titova and Zhang
(2025) showed that revelation proofness is automatically satisfied. When there are
three or more actions, however, the restriction imposed by revelation proofness can be
substantial. We illustrated this in our introductory example with p = 0.6. In this case,
the commitment-optimal bi-pooling partition is given by B; = [0, %], By = [%, g—i], B3 =
(£, 5] U [3,1]. Note that in this case (ii) is violated because Bs is nested by co(Bs),

87 64
but max By = g—i > % = 3.

When there are two actions, the sender’s sole objective is to maximize the probabil-
ity that the “high action” 2 is played. This, in turn, suggests that revelation proofness
is never an issue: in any state in which action 2 is played under complete information,
there is no reason to recommend action 1. However, with three actions, as Gentzkow
and Kamenica (2016) note, in the commitment problem the sender faces a trade-off
between inducing actions 2 and 3. When p is high, the gap between us; and wug is
significantly smaller than that between w; and wuy, and hence it is more profitable to
induce action 2 more often: to guarantee obedience, recommending action 3 more of-
ten must come with action 1 being played more frequently. Consequently, the unique
commitment-optimal partition recommends action 2 so frequently that max By > 3.
Then in states strictly higher than 3, the sender is strictly better off by fully revealing

the state, rendering the commitment solution not implementable.

4.3 Sufficient Conditions for Implementability

In what follows we identify conditions on model primitives that guarantee an imple-
mentable commitment solution exists. Under these conditions, the sender would not
benefit from commitment relative to the sender-preferred equilibrium. The equilibrium
payoff set and the sender-preferred equilibrium partition can thus be found by solving
the corresponding commitment problem. Conversely, the commitment assumption is
unnecessary for any information-design problem that satisfies these conditions.

To state the result, let A(7;; vi11) denote the unique solution of Elw | w € [A(7vi; Vit1),
Yix1]] = i if it exists, and set it to 0 otherwise. Intuitively, h(7;;vit1) is the lowest
state such that the conditional mean of the states between this state and 7,4 is no

less than ~;.
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Proposition 2. Suppose there are three or more actions. If

Ui4+1 — Ug Ui — Uj—1

Yi+1l — Vi Yi — max {%‘—1, h (%‘; %+1)}’

(4)

for alli = 2,...,n — 1, then every commitment solution associated with a bi-pooling
partition is implementable. Consequently, the commitment payoff is attained in an

equilibrium of the disclosure game.

In Condition (4), u;y1 — u; is the sender’s marginal benefit of inducing a higher
action evaluated at action i, and ~v;,1 — ; is the difference in cutoffs for inducing
actions 7 + 1 and ¢ under complete information, respectively. Proposition 2 suggests
that in a communication environment, if inducing a marginally higher action is either
sufficiently more profitable or sufficiently more difficult (requiring a sufficiently larger
expected state), or both, then the sender does not benefit from commitment power.
Put differently, the sender does not value commitment when his value function increases
sufficiently fast in the expected state.

The rough intuition behind Proposition 2 is as follows. To establish the sufficiency
of (4), we will argue that any partition that is not revelation-proof must also fail
optimality in the commitment problem. Take any barely obedient bi-pooling partition
B that is not revelation-proof. Then, some action 7 is recommended in some states in
which the sender would prefer to fully reveal the state to induce a higher action instead;
that is, max B; > 7,11. To illustrate how B can then be strictly improved, suppose B;
is an interval. Then, max B; > 7;;1 and obedience implies v;,1 € B;. Next, modify
the partition by shrinking B; and shifting the probability of recommending action ¢ to
actions ¢ — 1 and ¢ + 1. Recommending action ¢ 4+ 1 can be still made barely obedient
by inducing belief ;1. At the same time, action ¢ — 1 can now be induced at ~;_;
if v;_1 is not too low, and otherwise at h(v;;7v;+1). Either way, condition (4) ensures
that such a local mean-preserving spread is profitable by requiring the sender’s utility
to be “convex enough” with respect to the cutoffs {v;}ien. Consequently, any barely
obedient partition associated with a commitment solution must be revelation-proof,
and thus every such commitment solution is implementable.

Imposing a further assumption on the prior, Condition (4) can be simplified.

Corollary 2. Suppose there are three or more actions. If for all i = 1,...,n — 1,
Uit —U; = Ui—Ui—q and Vi1 —Y < Vi —Yi—1 with one of the inequalities being strict, and

f s increasing, then every commitment solution associated with a bi-pooling partition
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1s implementable. Consequently, the commitment payoff is attained in an equilibrium.

An increasing prior density is equivalent to a convex prior CDF. This condition is
satisfied by the uniform distribution, and more generally the family of power distribu-
tions on [0, 1] with CDF given by F'(z) =z, o > 1.

4.4 The Special Case of Ternary Actions

It is instructive to take a deeper dive into the case in which the receiver has three
actions. In this case, a partition can be written as B = {Bj, By, B3}. As implied
by Theorem 2 (i), in a sender-preferred laminar equilibrium partition, B; must be an
interval if not null. Moreover, By and Bj are either both intervals or are such that
By C co(Bj3), meaning that B is a bi-pooling partition.'> Consequently, Theorem 2
implies that revelation proofness boils down to max By < 7.

Armed with these observations, a sender-preferred equilibrium can be explicitly

solved.

Claim 1. Suppose that |[N| = 3.1° A sender-preferred equilibrium is associated with a
barely obedient bi-pooling partition B that either is also associated with the commitment
solution, or is such that By = [0,y], By = [h, 73], and Bs = [y, h]U |3, 1], where h > 0,

y > 0 solve the system of equations

Ew|w € [h]] = 2
Elwlwée[y,hUlys,1]] = s

When there are only three actions, the only reason that a commitment solution is
not implementable is that the “middle action” 2 is recommended too often. Therefore,
if no commitment solution is implementable, in the bi-pooling partition associated with
a sender-preferred equilibrium, action 2 is recommended as frequently as revelation
proofness allows: that is, the upper bound of By must coincide with 3. The proofs of
all results in this subsection are relegated to a supplementary appendix.

The sufficient conditions can be further simplified when |N| = 3.

Corollary 3. If |[N| = 3, f is increasing, and uz > 2usy, then all commitment solutions

are implementable.

15Both B; and By may be empty, but Bs cannot be: otherwise, revelation proofness must be
violated.
6For a finite set K, let |K| denote the cardinality of K.
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Applying Corollary 3 to our introductory example, since us = p and uz = 1, as long
as p < 0.5, the seller does not benefit from commitment power. In other words, even
prior to solving the commitment problem, we know that a sender-preferred equilibrium

partition can be identified from the commitment solution.

5 Applications

5.1 Selling with Quality Disclosure

We first consider a variant of the model of a sales encounter studied in Section 5 of
Milgrom (1981). The state of the world, w, is interpreted as the quality of the seller’s
product. Let p > 0 be the unit price, and for simplicity, assume that there is no
quantity discount. Denote the seller’s constant unit cost by ¢, where 0 < ¢ < p.
The product is indivisible: the buyer can only buy integer units of the product. The
buyer’s utility from purchasing ¢ units is wU(q) — pq, where U : Ry — R is a bounded,
strictly increasing, strictly concave threetimes differentiable function with U(0) = 0.
We further assume that U(q) — pg is maximized at n > 1. As a consequence, the buyer
buys at most n units of the product, and she buys nothing if w is close enough to 0.

The only significant difference between this model and that of Milgrom (1981) is
that he considers a perfectly divisible product, and hence the seller’s value function
is strictly increasing. In this model, however, indivisibility makes the seller’s value
function a step function with n jumps. For a perfectly divisible product, Milgrom shows
that every equilibrium of the game features full revelation: the seller sends m = {w} for
each w € [0, 1], resulting in the buyer-preferred outcome. With indivisibility, however,
the seller may be able to gain considerably from verifiable communication, attaining
his commitment payoff.

To state the result, let

U (x)

Ax) = T(2)’ and P(x)=

B U”I(:L”
U”(ZE)

~—

denote the coefficients of absolute risk aversion and absolute prudence, respectively.

Claim 2. If f is increasing and P > 2A, there exists an equilibrium of this game in

which the seller is as well off as having commitment power.

The proofs of results in this section are left to a supplementary appendix. The
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assumption of increasing prior density can be interpreted as it is common knowledge
that the consumer is relatively confident about the quality of the product. P > 2A is
satisfied by, for example, CRRA utility function with parameter 0 < o < 1.

5.2 Influencing Voters

Consider an amendment voting setting where a voting rule satisfying the Condorcet
winner criterion is employed to determine which one of the three alternatives, the
(unamended) bill (b), the amended bill (ab), and no bill (maintaining the status quo;
@), will prevail.'” The state of the world is w € [0, 1], and denote the set of voters by J;
for simplicity, assume that |J| > 1 is an odd number. Voters have linear preferences:
for j € J, voter j’s utilities are given by ui(w) = ai + Biw, where k € {b,ab, &}
and where w € [0,1] is the state of the world. Moreover, 57 > 2, > 85 = 0 and
0=al, > aib > Ozi for all j € J. Let fyg and 'yé denote the cutoff states that voter
j is indifferent between @ and ab, and ab and b, respectively.'® We impose further
assumptions so that 7% < 7§ for all j € J.

In this model, voter j’s preferences over alternative k are characterized by two
parameters: one is ai, we call it voter j’s reference point for alternative k as it is
the voter’s cardinal utility when the state is zero; another is Bi, we call it voter j’s
state sensitivity for alternative k because it measures how fast the voter’s cardinal
utility increases in the state. Furthermore, all voters agree that when the state is low
(intermediate, high), no bill (the amended bill, the bill, respectively) is optimal, but
for the amended bill or the bill, different voters may have different reference points and
different state sensitivity levels. Figure 6 illustrates a voter’s utilities and the resulting
cutoffs.

There is an expert who observes the state and can communicate to the voters. We
follow Jackson and Tan (2013) to assume that the expert discloses verifiable informa-
tion. Unlike their work with two states, however, we consider a continuum of states,
and the expert’s messages are closed subsets of the state space that contain the true

state. Assume that the expert’s preferences satisfy u(b) > u(ab) > u(@) = 0; that is,

17See, for example, Enelow and Koehler (1980) and Enelow (1981) for examples of amendment
voting.
18For every j € J,

J J J

; o e o

J ab J _ “ab b
Yo = 5 and vz = i Tt
ab 6b ab
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Figure 6. Voter j’s utilities.

the expert strictly prefers the bill to the amended bill, and the amended bill is strictly
preferred to no bill.

Because the voting rule satisfies the Condorcet winner criterion, and the prefer-
ences are single-peaked, the Condorcet winner is the median voter’s most preferred
alternative.!® Therefore, it suffices to consider the median voter; further assumptions
are imposed to make sure that the median voter is the same voter, say voter m, for all
states.?’ Consequently, the expert’s problem is equivalent to communicating to voter
m alone. Thus, the expert-preferred equilibrium is characterized by Claim 1.

Claim 3 shows that the expert can be hurt if all voters become “more inclined
toward” the bill, in the sense that all else equal, either the reference point or the state

sensitivity for the bill increases (or both) for all voters.

Claim 3. If no commitment solution is implementable, and at least one of the following

happens:
(i) voter j’s state sensitivity for the bill, ﬁ{), increases for all j € J,

(ii) voter j’s reference point for the bill, o7, increases for all j € J,

then the expert’s payoff in his preferred equilibria may decrease.

190ne voting rule used for amendment voting that satisfies the Condorcet winner criterion when vot-
ers’ preferences are single-peaked is the pairwise majority rule, in which alternatives will be considered
sequentially and two at a time using the majority rule.

2OThat is, we assume that for any two voters where one is indexed higher than the other (i > j),
v > 5 and 4 > 73 (see Footnote 18 for the definition of the cutoffs). A sufficient condition for
this assumption is that (i) all voters share the same reference points for both b and ab: a{; = ap and
aib = agp for all j € J; (ii) among voters, those with a higher index not only exhibit higher state
sensitivity for both b and ab but also show a strictly greater difference in state sensitivity between
these alternatives: ¢ > j implies 8%, > g7, B} > B} and B — 8., > B — B32,.
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When either (i) or (ii) occurs (or both), 74 decreases for every voter j, and hence
~v5" must also decrease. This implies that the expected state required to pass the
bill is lowered. Recall from the discussion after Claim 1 that in scenarios where no
commitment solution is implementable, the expert is too tempted to recommend the
amended bill at the ex-ante stage. This may occur when the utility gap between the
bill and the amended bill is smaller than that between the amended bill and the status
quo (i.e., u(b) — u(ab) < u(ab) — u(@)), which is plausible in many voting scenarios.
As " decreases, the expert can more frequently induce the passage of the original
bill. However, this also introduces an adverse indirect effect: the revelation proofness
constraint tightens, limiting the chance of inducing the amended bill. Therefore, the

expert is harmed if the indirect effect dominates.

6 Discussion

6.1 Assumption on the Message Space

Although our assumption on the message space is standard in the literature, it is
useful to discuss the meaning of this assumption as well as how our results rely on
it. Importantly, the sender does not need to literally use a closed subset of the state
space as his message; what we require is complete provability: the sender can prove
any true fact. More specifically, in each state w, the sender’s message space, or the set
of evidence, M(w), is sufficiently rich in the sense that for every closed subset C' of
the state space [0, 1], there is a message m that provides hard evidence that the state
is contained in C. Formally, m € M(w) if and only if w € C.

Two implications of this assumption are crucial to our results. First, the sender can
always fully reveal the state; that is, the fully revealing message m = {w} is feasible in
every w € [0,1]. This implies that in every state, the sender’s equilibrium payoff must
be no lower than his payoff from fully revealing the state, which gives rise to revelation
proofness. It turns out that full revelation is the only kind of deviation that needs
to be accounted for, which largely simplifies the analysis. Second, the sender can use
messages that are the unions of a finite number of closed intervals; the importance of

this feature is already explained in the previous sections.?!

210ne might believe that the payoffs of a laminar partition can be replicated using only closed
interval messages, by identifying each message with its convex hull. However, this approach fails.
Consider two partitional elements By, Bj, with By C co(By,). If one wants co (B},) to be sent in every
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6.2 Robustness

It is natural to ask whether the equilibria of the disclosure game considered in this
paper are credible in that they survive certain equilibrium refinements. We consider
the following two equilibrium refinements:

e The Never-a-Weak-Best-Response (NWBR) Criterion, proposed by Cho and Kreps
(1987), is a strengthening of a few equilibrium refinements that are extensively
used in the literature, which includes the Intuitive Criterion, D1, and D2.22

e The Grossman-Perry-Farrell equilibrium, proposed by Bertomeu and Cianciaruso
(2018), is based on the perfect sequential equilibrium of Grossman and Perry
(1986) and neologism-proofness of Farrell (1993).

It can be shown that every PE of the disclosure game we study is a Grossman-Perry-
Farrell equilibrium. Furthermore, every PE outcome survives the NWBR Criterion.

Interested readers are referred to the supplementary appendix for formal details.

6.3 Further Cheap Talk Opportunities

One may wonder what the sender would be able to achieve if he were also allowed
to send cheap talk messages. Indeed, Wu (2022) and Dasgupta (2023) show that this
benefits the sender in their respective settings. However, this is not the case in our
setting.

Define the sender’s value function in beliefs, denoted by w : A(Q) — R, by w(G) =
v(EG) for any G € A(Q), where v is the sender’s value function. Theorem 2 in

Lipnowski and Ravid (2020) asserts that the sender’s optimal value is given by the
quasiconcave hull of his value function in beliefs evaluated at the prior F.?* Observe
that w is the composite function of v and the expectation operator [E. Because v is
increasing, and an increasing transformation of an affine function is quasiconcave, w
coincides with its quasiconcave hull. The aforementioned theorem therefore suggests

that the sender never benefits from further cheap-talk opportunities.

w € By, this message is also available to every w € By since By = co(By) C co (By). Consequently,
in almost every w € By, the message co(B},) is sent, which renders replicating the laminar partition
impossible.

22 Although closely related, this is not precisely the same as the NWBR property proposed by
Kohlberg and Mertens (1986). For this reason, Fudenberg and Tirole (1991) call it “NWBR in
signaling games.”

2The quasiconcave hull of a function w : A(Q) — R is the pointwise lowest quasiconcave and upper
semicontinuous function that majorizes w.
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A  Omitted Proofs and Details

A.1 Proofs for Section 3

In what follows, we employ the following result, which is essentially Theorem 1 in
Titova and Zhang (2025) adapted to our setting.? We provide a proof below for

completeness.

Lemma 1. B is an equilibrium partition if and only if it is obedient and revelation-

Proof.

Proof. Sufficiency is straightforward: if B is not revelation-proof or obedient, then in
every associated assessment, the sender has a profitable deviation to full revelation or
the receiver is not best responding to an on-path message. For necessity, suppose that
B is an obedient and revelation-proof partition. Let (o, 7, p) be an associated partition
such that the receiver (1) has mazimally skeptical off-path beliefs and (2) best responds
according to her posterior mean and breaks ties in the sender-adversarial manner when
indifferent. Specifically, for each m ¢ B, let p(minm | m) = 1, and 7(j | m) = 1 if
minm € [y;_1,7;) and j € N\ {n}, or minm € [y,_1,7,] and j = n. Then, (o,7,p) is
an equilibrium, and thus B is an equilibrium partition. Indeed, equilibrium conditions
2, 3, and 4 are satisfied by construction. Equilibrium condition 1 (sender has no
profitable deviations for each w) is satisfied because if w € B; and w ¢ B; ;1 U... U B,,
then the sender’s interim payoff is wu;; deviations to on-path messages with a higher
index are not feasible, deviations to on-path messages with a lower index or to off-path

messages yield an interim payoff of at most w;. [ |
To prove Theorem 1, we will need three auxiliary results.

Claim 4. Let H be a mean-preserving contraction of F with |supp (H)| < n. Then
there exist cutoffs 0 =1 doy < dy < ... < dp_1 < dp, =1 withm < |supp (H)| such that

24The messages in this paper are closed subsets of the state space, while in Titova and Zhang (2025)
they are Borel subsets of the state space.
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Jy H(q)dq < [} F(q)dq on [di—y,d;] for alli =1,...,m and the inequality binds only
at d;_y and d;.

Proof of Claim 4. First, let supp (Gs) = {7;}F_,, where k < n since |supp (H)| < n
and 7; < 7; if i < j. Since F'(0) = H(0) = 0, F is strictly increasing (since f > 0),
and Hg is a step function, there exists € > 0 such that F(z) > H(x) for all z € [0, ¢].
Since H € M PC(F), we have fol q)dg = fo q) dg, and hence the set

D, = {:UE [e,1]: /OIH(Q)dq—/OIF(Q)dq}

is nonempty. Let d; = inf Dy. If d; = 1, then set m = 1 and the proof is complete.
For the rest of the proof, suppose that d; < 1.

Observe that 71 < dy < F: if dy < 7q, then F(x) > H(z) = 0 for all € [0, d,),
which contradicts the definition of dl, if di > A, then F(z) < H(z) = 1 for all
x € [dy, 1], so that fo q) dq # fo q) dg, a contradiction.

Next, we argue that F(dl) > H(dl). Suppose to the contrary that F'(d;) < H(dy).
Then, since H is a CDF and hence right-continuous, there must exist 6 > 0 such that
F(z) < H(x) = H(dy) for all x € [dy,d; + 6], where the equality follows from the fact
that H is a step function. Then,

di+0 di di1+6 di d1+6
/0 F(Q)dq:/o F(Q)dQ+/ F(q)dg = H(Q)d€1+/ F(q)dq

dy 0 dy

dy di+6
< H(Q)dQ+/ H(q)dg,
0 dy
which contradicts the assumption that H is a MPC of F'.
Now, let j = min{i : 3; > d;}. Given that dy < 7;, F'(dy) > H(dy), F is strictly
increasing, and H is a step function, there exists 77 > 0 such that F(xz) > H(z) for all
x € [dy,dy + n]. Consequently, fo q)dg = fo q) dg implies that the set

D2={l’€[d1+n,1]i /OIH(Q)dqz/OzF(Q)dq}

is nonempty. Let dy = inf Dy. If dy = 1, then set m = 2 and the proof is complete.
For the remainder of the proof, suppose that ds < 1. Using the same steps as above,
one can show that dy > 7; and F'(dy) > H(dy). Proceeding inductively, one can find d;
with ¢t < k < n such that d; > 7. It must be that d; = 1: suppose not, then because
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F is strictly increasing, F'(z) < 1 on (dg, 1); but H(z) = 1 on the same interval, which
implies that fol H(q)dq > fol F(q)dq, a contradiction. Now set m = ¢, the proof is
complete. [ |

Claim 5. If H is a mean-preserving contraction of F with |supp(H)| < n, then it

mduces a laminar partition.

Proof. By Claim 4, on each of the m intervals such that the MPC constraint only binds
at the endpoints, the mass is redistributed to at most n points, and there can be at
most m such intervals. We show that every such interval admits a laminar partition;
the definition of a laminar partition then implies that the resulting partition is still
laminar by taking the union.

Denote an arbitrary interval on which the MPC constraint only binds at the end-
points by I := [a,b]; that is, [;" H(q)dq < [ F(q)dq for all ¢ € I, and the inequality
binds only at a and b.

The remainder of the proof is very similar to the proof of Lemma 11 in Candogan
and Strack (2023), and hence we only provide an outline here; readers interested in
details are directed to that paper. Let K = |supp (H) N I| < n; the proof proceeds by
induction on K. If K =1, let supp (H) NI = {7:}; then clearly {B,} where By = |
is a laminar partition of I. If K = 2, let supp (H) NI = {74, Vm} where ¢ < m; then
by Lemma 4 in Arieli et al. (2023), {By, B,,} can be chosen such that By = [¢,d] and
B,, = |a,c] U [b,d], which is laminar.

Taking K = 2 as the base case, consider K > 2; the induction hypothesis holds
for K — 1. One can find a closed interval B, such that (i) pur(B¢) = h(7¢), where
h is the probability mass function (pmf) of H, and 7, = min(supp (H) N I),* and
(ii) Ew | w € By = 7,. Consequently, conditional on w ¢ By, H only has K — 1
mass points, and Lemma 12 in Candogan and Strack (2023) shows that it is a MPC of
F. Invoking the inductive hypothesis, a laminar partition of I, {Bi}ie’]’, is obtained,
where T := {k # ( : y, € supp (H) N I}. For every i € T, let B; := ¢l (B; ~ By). Since
{Bi}ier is laminar, and ¢ < i for all i € T, {B;}ieruqe is also laminar. |

Claim 6. Suppose that W C [0,1] and B = [z,y] C [0,1] such that up(W) = up(B)
and Elw |w e W] =E[w |w € B|. Then, inf W <z and y < sup W.

25The only difference between our proof and Candogan and Strack (2023)’s is that they choose
the mass point of H that has the largest index number on I, and for our purpose we work with the
smallest. Their proof, however, goes through despite this difference.
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Proof. We prove that y < sup W; the proof of inf W < x is analogous. Since pup(W) =
pp(B) and Elw | w € W] = Elw | w € B], we have [, ,wdF(w) =[5, wdF(w)
and pp(W \ B) = up(B~W).

Suppose, by contradiction, that sup W < y. Then, W~ B C [0,z], B\NW C [z, ]
and up(W \ B) = pup(B ~ W) > 0. Furthermore,

/WdeF(w)<qu(W\B):pr(B\W)</BWwdF(w),

a contradiction. Therefore, y < sup W. |

A.1.1 Proof of Theorem 1

Proof of Part (a). First, observe that the fully revealing partition A is obedient and
revelation-proof since A; = [y;_1, ;] for each i € N. By Lemma 1, it is an equilibrium
partition.

Next, we show that the sender’s ex-ante payoff cannot be lower than V in any other
equilibrium. Let w(w) := min{u; : i € N, w € A;} be the sender’s payoff in state w
when the receiver knows the state and breaks ties in the sender-adversarial manner.
By definition, [, w(w)dF(w) = >,y pr(Ai)u; = V. If the sender’s ex-ante payoff is
strictly below V in an equilibrium, then his interim payoff is strictly below w(w) in a
positive measure of states. Then, in each of those states, the sender has a profitable
deviation toward sending message {w} and receiving w(w). Therefore, the sender’s
ex-ante payoff in a sender-worst equilibrium is exactly V. This completes the proof of
Part (a).

Proof of Part (b). We proceed in three steps. First, we show that if there ex-
ists a sender-preferred equilibrium, then there exists a sender-preferred laminar PE
(Lemma 2). Second, we show that a sender-preferred laminar PE exists (Lemma 3).
Third, we show that V >V (Lemma 4).

Lemma 2. For any equilibrium n which the receiver plays pure strateqy, there exists
a laminar equilibrium partition that induces the same posterior mean distribution.
Furthermore, if there exists a sender-preferred equilibrium, then there exists a sender-

preferred laminar partitional equilibrium.

Proof of Lemma 2. Let (o,7,p) be an equilibrium in which the receiver plays pure

strategies. For any state w €  in which the sender mixes, i.e., |supp o(- | w)| > 1,
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since (o, 7, p) is an equilibrium, there exists ¢ € N such that 7(i | m) = 7(i | m') =1
for every m,m’ € supp o(- | w). Thus, in every w € Q, there is an action i played with

probability 1 in this equilibrium. For every ¢ € N, let
W, ={weQ:7(i | m) =1 for all m € supp o(- | w)}.

By construction, U;enW; = €, and W; N W; = @ for any ¢ # j. By Theorem 1(a)
of Titova and Zhang (2025), for every i € N, 7, = Elw | w € W}] € [vi—1,7], and
W; C [0, 7]

Consider the PMD G with supp G C {7:}1, whose probability mass function is
given by §(3:) = pp(W;). By construction, G is a MPC of the PMD induced by the
equilibrium (e, 7,p); since G is induced by an equilibrium, it is a MPC of F. Thus,
G is a mean-preserving contraction of F with |supp(G)| < n. Then by Claim 5, G
is also induced by a laminar partition B with generic element B;. By construction,
for every i € N, Elw | w € B;] = 7;, which implies obedience. Also by construction,
wur(B;) = prp(W;) for each i € N.

We show next that B is also revelation-proof, i.e., B; C [0,7;41] for all ¢ € N. Fix
i € N. Because B is laminar, there exists k& < i such that for every action j € {k, ..., i},
co(B;) C co(B;); and for every action j € {1,...,k—1,i+1,...,n}, up(B;Nco (B;)) =
0. This implies that B\Z := ByU...UB; = co(B;) is an interval. Let /MZ = W,U...UW,.
Since for each j =k, ....4, pup(B;) = pr(W;) and Ejw | w € B;] = Ejw | w € W}], and
since W; N W, = @ and pp(B; N By) = 0 for any j # ¢, we have pr(B;) = ,up(ﬁ/\i) and
Elw|weB]=Ew|we 171\/@] By Claim 6, we have B; C W; C [0,7i11], where the
last inclusion follows since W; C [0, ;4] for all i € N.

To prove the second statement, suppose that there exists a sender-preferred equi-
librium. Without loss, we focus on a sender-preferred equilibrium (e, 7, p) in which the
receiver breaks ties in favor of the sender.?® Then by the first statement, there must

exist a sender-preferred laminar equilibrium partition. [ |

Lemma 3. Among all obedient and revelation-proof laminar partitions, there is one

that maximizes the sender’s ex-ante payolff.

Proof. The problem of finding a laminar partitional equilibrium that maximizes the

26Tf the receiver plays a mixed strategy in some sender-preferred equilibrium (o’,7’,p’), then the
assessment (o, 7", p"), where 7”7 is obtained from 7’ by breaking the receiver’s ties in favor of the
highest action in the support of 7 is also an equilibrium.
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sender’s ex-ante payoff can be written as

max Z uipr(By)

B laminar
1EN
st |JBi=10,1]
1EN

pr(B; N B;) = @ for all i # j
v < Ew|wé€ B;] <yq forallie N
B; € [0,7;41] for alli € N

To prove the lemma, it suffices to show that this problem has a solution.

Although an action j may be never recommended, one can still assume that B; is
nonempty by setting pp(B;) = 0. Because B is laminar, it is without loss of generality
to assume that for each i € N, B; is the union of at most n intervals (cf. Observation 1).
Consequently, adding singletons if necessary, one can always set B; as the union of
exactly n convex sets {B; s}, such that up(B;y N B;g) =0 for all s" # s".

Let C.(]0,1]) denote the set of closed, nonempty, and convex subsets of [0, 1] en-
dowed with the Hausdorff distance; to simplify notation, we write C. henceforth. By
Proposition 1 in Ely (2022), C. is compact; by Tychonoff’s theorem, C** is compact in

the product topology. The problem above can be transformed to

max ZuiZup(Bm) (5)

{BisteC” Gen =1
S.t. U@S Bi,s = [O, 1]
MF(Bi’,s’ n Bi//75//) = 0 for all (i/, S,) 7é (i//, SH)

ur (nglBi,S) Vi < / w dMF(W) < pr (nglBi—H,s) Yi+1

un Bi,s

s=1

41 Bis € [0,7i41]

where the third constraint is equivalent to the conditional mean condition.

Define
D= {{Bi7s} €C”: Uiy B;y =[0,1], and pp(Byy N B y) = 0 for all (i, ") # (i", s”)} ;

We claim that D is compact. To show this, it is enough to show that D is a closed
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subset of C**. Take any {B7.} that converges to {B;} in the product topology,
then B, — B, for each 7 and s. Consequently, because the limit of convergence in
Hausdorff distance is preserved under finite unions,?’ Ui,sBZé — U, sB; 5. Therefore, if
Ui« Bl = [0, 1], it must be that U; ;B; s = [0, 1]. Furthermore, if ur(B7', N B ) =0
for all m and (i, s) # (i”, s”), the same argument as the second paragraph in the proof
of Lemma 2 in Ely (2022) shows that up(By g N Bing) = 0 for all (i',s") # (i, 5").
Therefore, if {B".} € D for each m and {B}",} — {B;}, it must be that {B;,} € D.
Thus, D is a closed subset of CQQ.

Problem (5) is equivalent to

7 B'L's 6
Ay 2,0 2 r(Bre) o

s.t. (Z :U’F(Bi,s)> Vi < Z/B wdpp(w) < (Z MF(B¢,3)> Vit1 (7)

w1 Bis €[0,7i11] (8)

where constraint (7) supersedes the the third constraint in problem (5) because for any
{Bis} € D, up(Byy N Bin ) =0 for all (¢, s") # (i",s").

By the extreme value theorem, to show that a solution to problem (6) exists, it
suffices to show that (i) the objective function is continuous, and (ii) the constraint set
is nonempty and compact. Clearly, the constraint set is nonempty: for each ¢ € N,
consider

Bi1=A;, and B; s = {viq1} forall s =2,... n,

then {B,} is feasible for this problem. Furthermore, by Proposition 1 in Ely (2022),
pr is continuous on C., and hence the objective is continuous.

Since D is compact, to show that the constraint set is compact, it suffices to show
that each of the constraints, (7) and (8), defines a closed subset of D. Observe that if
C™ — C and D™ — D with C™ C D™ for all m, then C' C D.?® Then because the
limit of convergence in Hausdorff distance is preserved under finite unions, if Ug_; B, C
[0, 7i41] for each 4, it must be that U?_; B; s C [0, vi+1] for each i. Hence, (8) defines a
closed subset of D.

Next, we show that (7) does the same, which is equivalent to showing that if

27See, for example, Lemma 4.5 in McLennan (2018).
28Gee, for example, page 15 in Ely (2022).
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{B7.} = {Bis} where {B]"} € D for each m, then

(Z uF(B;p) %<y /B L wdir(w) < (Z uF<B;i;>> Yir1

for all m and ¢ implies that

(Z uF<Bi,s)> 52> [ wdue) < (Z uF(Bi,g) Yoo

for all i. Because pp is continuous on Ce, Y7 | ur(By) — Y, ur(Bys) for all i.

Consequently, (30 ur(BJ)) v = (Xi_y wr(Bis)) v, and (3o pr(Bfy)) vig1 —
(> ur(Bis)) Yit1 for each i. Therefore, it only remains to show that

S [ wdur@) 5 Y [ wdir)
s=1 b s=1 7 Bis

which is a consequence of E — [, wdup(w) being continuous on Ce.

To prove this claim, we show that £ — [,wdur(w) is both upper- and lower-
semicontinuous. To see that it is upper-semicontinuous, pick any € > 0, and let £ € C,;
we show that there exists § > 0 such that for every E' € N(FE,J), where N(E,0) is
the d-neighborhood of E, [, wdur(w) < [,wdpur(w)+e. Because E € C,, there exist
a,b € [0,1] such that E = [a,b]. The key observation here is that for any £’ € N(E,J),
it must be that £’ C [a — 6,0+ 6]. Then

/ab+6deF(W) = /(l;deF(W) + /abwdup(w) + /bb+6wduF<W)

-6

< pr(la - 6.a]) + /E wdup () + (b, b+ 8))

where the inequality holds because w € [0, 1]. For § small enough, since u is absolutely

continuous with respect to the Lebesgue measure,

[t < [ wanre) < [[wdurto) +=

—0 E

Next, we show that [, wdur(w) is lower semicontinuous, that is, there exists § > 0
such that for every E' € N(E,0), [, wdup(w) > [, wdppr(w) —e. Without loss of
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generality, assume 0 < (b — a)/2. Consequently, [a + 0,b — d] is an interval of positive
measure, and for any £’ € N(FE,0), [a +0,b— 6] C E'. Then

/a:awduF(w) = /abwdluF(w) B /aa+6wdup(w) — /b:wdup(w)

> /E wdpp(w) — app([a — 6,a]) — app((b,b + o))

where the inequality follows from the fact that w > a on [a, b]. Consequently, [, w dup(w)
is both upper- and lower-semicontinuous, and hence continuous. This completes the

proof. [

Let B denote a laminar partition associated with a sender-preferred equilibrium; by
the previous two lemmas, such a partition exists. Denote the sender’s ex-ante payoff
from B by V,

Lemma 4. V > V.

Proof. To prove the statement, we construct an equilibrium partition B = {B;}ien
that yields V/(B) > V. For each i € N \ {1,n}, let B; = A;. Also, for some ¢ € (0,7),
let By = [g,7.] and B, = [0,e] U A,,. It is easy to see that {B; };en is a revelation-proof
partition. Furthermore, Elw | w € B;] € A; for alli € N~ {n} by construction. Finally,
the function ¢¥(¢') := Elw | w € B,] = foal wdF(w) + [, wdF(w) is strictly decreasing,
continuous and 1 (0) > ~,. Consequently, there exists ¢ > 0 such that ¥(g) € [vy,, 1],
which makes B an obedient partition. By Lemma 1, B is an equilibrium partition; the

sender’s ex-ante payoff in that equilibrium is
V(B) =V + pur([0,€])(up — u1) >V,

which completes the proof. [ |

Proof of Part (c). For any V € [V, V], we construct an obedient and revelation-
proof laminar partition that yields V' by “blending” the fully informative partition A
and a sender-preferred laminar equilibrium partition B (which exists by part (b)). For
all z € [0,7,],

e for every ¢ € N such that v,,; < z, let Ef = A

e if i is such that such that v; < z < 7,1, B == cl(B; ~ [0,7%]) U [y, 2];

7
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e for every i € N such that z < ~;, let B? == cl(B; \ [0, 2]).
For any z € [0,7,], and any i € N, E [w‘w € B;] € A; implies E [w|w € Bf] € A;.
Consequently, B(z) := {B?}™_, is obedient. It is also revelation-proof because both A
and B are. Finally, because both A and B are laminar, it can be checked using (1)
that B(z) is a laminar partition.

Let V() denote the sender’s ex-ante payoff from B(z): V(z) = D ien Ui b (Bg) ;
because f > 0, V(z) is continuous in z. Since V(0) =V >V >V = V(v,), by the
intermediate value theorem, there exists 2V € [0,7,] such that V(z"') = V. Thus, the

partition B (") is an obedient and revelation-proof laminar partition that yields V.

A.1.2 Proof of Theorem 2
Proof of (i). We first prove the following preliminary result.

Claim 7. Let B be a laminar partition associated with a sender- preferred equilibrium,
and let j = min{i : pp(B;) > 0}. IfEw|w € B,| > v;, then B; = [0,d] for some
d < Y41

Proof. Because B is a laminar partition, B; must be an interval, and hence one can
write B; = [b;,b;]. Furthermore, revelation proofness implies that [b;, b;] C [0,7;41]-

To show that b; = 0, it suffices to show that int (B;) N co (By) = @ for all k > j.*
Suppose not, so B; C co(By) for some k£ > j. The laminar structure implies that
By, is the union of at most k closed intervals; let [«, 5] and [(,n] be an interval such
that 8 < b; and [, 3] C By; this interval is well-defined because B is laminar and
B; C co(By). Because E|w|w € By] = v and E[w|w € B;] := 75 > v, for small
enough € > 0, one can find h(e) such that

E[w|w e (BxU b — h(e),b]) ~ (B—e,8]] =,

and

E [w ‘ w € [6 — €,B] U [l_)] — ]’L(&T),EJ” Z ’)/j.
Now define a new partition B with generic element EZ by EZ = B; if 1 # j,k, Ej =
(8 —¢,8]Ub; — h(e),b;], and By, = (Br U [b; — h(e),bj]) ~ (B—¢,8]. B is obedient by
construction, and it is also revelation-proof because B is; then by Lemma 1, B is an

equilibrium partition. Furthermore, it must be that pp(By) > pup(By): this is because

29For a subset S of [0,1], int (S) denotes the interior of S.
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by construction, E[w|w € By = E [w |w e §k} =y, and fﬁk wdF(w) > ka wdF(w).
Consequently, the sender’s payoff is strictly higher in this new equilibrium since j <
k, which contradicts the assumption that B is a partition associated with a sender-

preferred equilibrium. [ |

We are now ready to prove (i). Recall that a laminar partition is defined by (1).
Because co (By) must be an interval for all k, Uk, co(By) is the union of at most
1 — 1 intervals. By Claim 7, since B is associated with a sender-preferred equilibrium,
int (By) N By, = @ for all k& > 2. Thus, for any ¢ > 1, by taking out Uy, co (Bg) from
co (B;), at most max{i — 2,0} intervals are removed, and hence the remainder, namely
co (B;) ~\ Ug<; co (By), must be the union of at most max{i — 1, 1} intervals. By taking

closure, B; is also the union of at most max{i — 1,1} intervals.

Proof of (ii). Suppose to the contrary that B, a laminar partition associated with
a sender-preferred equilibrium, has Ejw | w € Bg] > v, for some non-null £ > j.
By Lemma 1, B is both obedient and revelation-proof. Let b; := min B;; because
f >0, there exists x € B; with @ > b, such that Elw | w € [b;, 2] U By] > 7, and
Elw | w € Bj N [b;,7]] > ;. Now consider the partition B where B; = B; \ [b;, 7],
By, = [b;, ] U By, and B; = B; for i # j, k. B is obedient and revelation-proof because
B is, and the sender’s ex-ante payoff from B, V(l?), satisfies

V(B) =V = [F(z) — F(b;)] (ux —u;) >0,
a contradiction.

Proof of the “Furthermore” statement. Let B be a barely obedient laminar
partition. For convenience, for any B; € B, denote b; := min B; and b; := max B;.%

We first prove the follwoing auxiliary result.

Claim 8. Let B be a barely obedient laminar partition, and let i, be two unskipped
actions with i < j. Then if pp(co (B;) Nco(B;)) =0, then every w' € B; and w" € B;

satisfy W' < W”.

Proof of Claim 8. Because pp(co(B;) Nco(B;)) =0, either v’ < w” for every w’ € B;

andw” € B;, orw' > w” for every w’ € B; and w” € B;. The second possibility, however,

30If B; = @, we let b, = b; = 0.

39



cannot be true: by obedience, j < i implies that b; < v;, and Ejw | w € B;] > 7.
Consequently, b; > ~; > b;, a contradiction. Therefore, it must be that w' < w" for
every w' € B; and w” € B;. [ |

We are now ready to prove the equivalence between revelation proofness and the
condition that max B; < ~;4; for all unskipped ¢ such that ¢ + 1 either nests i or is

skipped.

Proof of the equivalence. Suppose first that max B; < ~;,1 for all unskipped ¢ such that
i+ 1 either nests i or is skipped, and we show that for any action i € N, B; C [0, v;41]-
Since B is laminar, it is without loss of generality to assume that if action 7 is skipped,
B; €0, yiq1)-

Now suppose ¢ is not skipped. There are two possibilities: either action ¢ + 1 is
skipped or not. If i + 1 is skipped, by assumption b; < 7,1, implying B; C [0, yi41].
If instead 7 4+ 1 is not skipped, there are two cases: either B; C co(B;y1) or not. If
B; C co(Bi11), then by assumption b; < 7;,1, implying that B; C [0, vi1].

Suppose instead that B; is not a subset of co (B;;1), and suppose to the contrary
that b; > ~i+1- Because B is laminar, since B; is not a subset of co (B;11) (which means
that co (B;;+1) does not nest co(B;)), it must be that pg(co(B;) Nco(Biy1)) = 2.
By Claim 8, for every w’ € B; and every w” € By, o < w”. This implies that
w > b > viv1 for every w € B;.i, violating bare obedience, a contradiction. Thus,
b; < Yi+1, which implies that B; C [0, vi41].

For the other direction, it suffices to prove the contrapositive. Note that if the
condition is violated; that is, max B; > 7;.1 for some unskipped ¢ such that i+ 1 either
nests i or is skipped, implying that B; is not a subset of [0,~;41]. Thus, the laminar

partition B must violate revelation proofness. [ |

A.2 Proofs and Details for Section 4

We first introduce the notion of a bi-pooling distribution.

Definition 4 (Bi-pooling distribution). A distribution G € MPC(F)) is a bi-pooling
distribution if there exists a collection of pairwise disjoint intervals {(w;,@;)},.; such

that
o foralli € Z, G(w;) — G (w;) = F (w;) — F (w;) and [supp (G|w,z))| < 2;™

1

31For any cumulative distribution function H, let H|(. 4 denote the restriction of G to [¢,d] C [0, 1].
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° G|[071]\Uiez(£¢@i) - F|[0:1]\Uiez(ﬂi@i)'

In particular, (w;,®;) is called a pooling interval if ’supp (G |(ﬂi@.)) } = 1, and it is called

a bi-pooling interval if ‘supp (G |(%@i))| = 2.

We call a bi-pooling distribution Gp that solves the commitment problem (3) a

bi-pooling solution.

The following observation is proved useful.

Lemma 5 (Candogan, 2019). Every bi-pooling solution to the commitment problem
satisfies supp (Gg) C [0,7] U {v:}iy, where ¥ € [0,1] is such that ¥ < ~ for all
v € supp (Gp) N {7}y

An important consequence of Lemma 5 is that every signal realization can be iden-
tified by the action it induces. In particular, every = € supp (Gg) N [0,7] induces the
lowest unskipped action, and +; induces action ¢ for each ¢ = 2,...,n. Moreover, if
a bi-pooling solution is associated with a bi-pooling partition, then Lemma 5 implies

that the partition must be barely obedient.

A.2.1 Proof of Theorem 3

Part (i). By results in Kleiner et al. (2021) and Arieli et al. (2023), the commitment
problem (3) admits a bi-pooling solution.

By Lemma 5, in any bi-pooling solution G, if supp(Gg) ~ {7 },—, is nonempty but
not a singleton, there must exist an interval [0, d] on which action 1 is recommended,
and [d, 1] is comprised of pooling intervals and/or bi-pooling intervals; in this case,
[0,d] can be viewed as a pooling interval. Otherwise, [0, 1] comprises pooling and/or
bi-pooling intervals. The fact that every bi-pooling solution Gg is associated with a
bi-pooling partition therefore follows from Lemma 4 in Arieli et al. (2023): on every
pooling interval, a single signal realizes, which induces a single action and hence ties to
a single partitional element. On every bi-pooling interval (w,w), there exists (¢,q) C
(w,w) such that one (deterministic) signal realizes when w € (g,¢), and another signal
realizes when w € (w, q) U (7,w), with the latter signal recommending a higher action.
Then [g,q] and [w, q] U [q,®] correspond to two partitional elements B, and Bj, with
¢ < h, respectively. This observation and Lemma 5 together imply that the bi-pooling
partition is barely obedient.

To see uniqueness of the barely obedient bi-pooling partition, first note that every

pooling interval necessarily ties to a unique partitional element; hence if a bi-pooling
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solution admits two distinct bi-pooling partitions, B! and B?, they must differ on a
bi-pooling interval (w,@). Then there must exist {By, By} and {Bj, B} such that
By = [b,, by, By = |w, by U [be, @], By = [b,b,], and B} = [w, b)] U [y, ], with either
by # b, or Ble # by, or both. Since f > 0 and w and @ are fixed, either Elw | w € By] # 7y,
or Elw | w € B)] # s, or both. A contradiction.

Part (ii). Based on part (i), it suffices to show that the solution to the commitment
problem (3) is unique, and the unique solution is a unique bi-pooling distribution. For
any bi-pooling solution Gp, let p; := Gpg(vit1) — Gp(7;) for each i = 2,... n. If
supp (Gg) ~ {7i}i_; = @, set 3 = Gp(72) and @ = 0; otherwise, let 1 = Gp() and
i1 = Gp(y2) —i; Lemma 5 then indicates that every bi-pooling solution is identified by
{r}U{p},. By Lemma D.1 in Candogan (2022), no three elements of the collection
of points {(7;, u;) }*, are collinear implies that any two bi-pooling solutions of problem
(3) induces the same collection of {zi}U{;}" 5. Then because every bi-pooling solution
is a mean-preserving spread of F', any two such bi-pooling solutions must be identical.
As noted in Kleiner et al. (2021) and Arieli et al. (2023), every extreme point of the set
of solutions to problem (3) is a bi-pooling solution, and hence the solution to problem

(3) must be a unique bi-pooling solution.

A.2.2 Proof of Proposition 1

Since the bi-pooling partition is barely obedient, the “if” direction follows directly from
Lemma 1. For the other direction, suppose first that a bi-pooling solution Gz is imple-
mentable. Because the commitment payoff is an upper bound of equilibrium payoffs,
Gp is the PMD induced by a sender-preferred equilibrium (o, 7,p). By Theorem 3,
G is associated with a unique barely obedient bi-pooling partition B; an argument

analogous to the one in the proof of Lemma 2 shows that B is revelation-proof.

A.2.3 Proof of Proposition 2

We use the following result due to Arieli et al. (2023) to prove Proposition 2. Say
that {v,,v,} is a feasible bi-pooling support for the interval (w,w) (or just feasible

for simplicity) if there exists a mean preserving contraction of F|,z whose support is
{ve: v}

Lemma 6 (Arieli et al., 2023). Fiz an interval (w,@), and let y(ve) satisfy Elw | w €
lw, y(7e))] = ve. Then {ve, W} is feasible for the interval (w,w) if and only if
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(i)

Elw [w € [y(y), @] = yn-

Proof of Proposition 2. Suppose to the contrary that there exists a bi-pooling solution

G that is not implementable. Then by Corollary 1, the bi-pooling partition of Gp,

B, must violate the condition therein. First suppose that there exists an unskipped

action 7 such that b; > Yi+1. There are two cases.

Case 1. B; is an interval; i.e., B; = [b;, b;]. There are two subcases:

(D

Yi—1 € int(Bi).
For z € (yi41,b;), let h(z) solve Ew | w € [b;, h(2)] U2, b;]] = 4iy1- By Lemma 6,
for z close enough to b;, {7V, 1,7} is feasible for [h(z),2]. Consequently, the

sender’s payoff on B;, as a function of z, is

P(2) = uina[F(bi) = F(2) + F(h(2)) = F(b;)]+

m(z) — Yi-1 i m(z)u o .
Yi — Vi-1 it Vi — Yie1 i-1| (F(2) = F(h(2)))

where m(z) := E[w | w € [z, h(2)]]. To show that this is a profitable deviation, it

suffices to show that P'(b;) := lim_ »5, P'(z) < 0. To this end, we first calculate

flz) z—h(z)

P(z) =
( ) Yi — Yk Vi+1 —h(Z

) [(wi — wi1)yirr + (Wigr — wi)yior — (Wigr — wio1)yi] -

Letting z by, then h(z) N\, b;, and

fb:)  bi—b
Vi — Yie1Yi41 — b

Pl@i) = [(Uz - Ui—l)%+1 + (Uz‘+1 - Uz‘)%‘—l - (Uz‘+1 - Ui-l)%‘] ;

Pl(bj) < 0 if and only if (wip1 — wi—1)y — (i — wi—1)Yip1 — (Uig1 — wi)Yie1 > 0,

and this is equivalent to

Uit1 — Uy > Ui — uifl’
Yi+r = Vi Vi — Vi-1
which is implied by (4).
vi—1 ¢ int(B;) (and therefore v;_1 < b;).
Define B = [b; + ¢, b]; for small enough ¢ > 0, {7;,7i41} is feasible for B5. Let
m(e) denote the mean of Bf; note that m(0) = ;. Then the sender’s payoff as a
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function of € on B; is

—mE) =y, vm—mle) nas o 5 ey R
Ple) = | =+ ——— ] [F(b;) = F(b + )] + wia[F(b; + €) — F(b)]-

To show that this is a profitable deviation, it suffices to show that P’(0) :=
lim. o P'(e) > 0. Algebra reveals that

P’(g) _ f(l_% + 5) [%’-1 e L e e ([_72‘ o\ Yit1 Y :
Yi+1 — Vi Yi+1 — Vi
consequently, as € \, 0,
f(b;
PO) = L8 (= b wis ) — (o — Wi — )] (9)
Yi+1 — Vi

Because f(b;) > 0 and ~;11 —; > 0 by assumption, the sign of P’(0) is the same
as the sign of term in the square brackets in the right-hand side of (9). Thus,

P’(0) > 0 if and only if
Ui41 — Uy > U; — Uj—1

Yi+1 — Vi Vi — l_% '

Because ;41 < bi, h(7i;7it1) > b;. Thus, (4) implies the inequality above.

Case 2. There is a partitional element B; with j < ¢ such that B; C co(B;). In this
case, B; = [b;, b;], and B; = [b;,b;] U[b;,b;]. WLOG, assume that b; < b;; by Lemma 6,

=17 2]

{~;,7:} is feasible for [b;, b;], and

Elw | w € [y(y;),bi]] > % (10)

Furthermore, it must be that v; € [b;,b;]: if instead +; € [b;, b;], it must be that 7; < 7,
which violates the assumption that 5 < 1.

For z € (i, b;), let h(z) solve Elw | w € [b;, h(2)]U[z, b;]] = 7i. By (10) and Lemma 6,
for z close enough to b;, {7;,7i} is feasible for [h(z), z]. Consequently, one can find a

profitable deviation similar to in Case 1 (I) mutatis mutandis.

Now suppose instead that there exists a pair of partitional elements B; and B,
with B; C co(Bi;1), and 7,41 < b;. Since B; = [b;, b;], this case is isomorphic to Case
1 when action 7 4+ 1 is skipped. As a consequence, we can similarly find a profitable

deviation.
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Therefore, every bi-pooling solution must satisfy the condition in Corollary 1, and

hence implementable. This completes the proof. [ |

A.2.4 Proof of Corollary 2

By definition of h(7;;7ir1), when f is increasing, viv1 — % < 7 — h (7i;%41). Then
since ;11 — 7 < Y — Vi1, it must be that ;11— < min{v; —vi—1,v — h (Vi;vi-1) }-
Now there are two cases. If u; 1 —u; > u; —u;_1, (4) must hold; then by Proposition 2,
every bi-pooling solution can be implemented. If instead ;11 —7; < v — 71, it must
be that viy1 — v < min{y; —vi-1,% — h (7;7%-1)}; this inequality and w1 — u; >
u; — u;—1 together imply (4). Again by Proposition 2, every bi-pooling solution can be

implemented.
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