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Abstract

This paper studies a game in which an informed sender with state-independent

preferences uses verifiable messages to convince a receiver to choose an action

from a finite set. We characterize the equilibrium outcomes of the game and

compare them to commitment outcomes from information design. We provide

conditions for a commitment outcome to be an equilibrium outcome and identify

environments in which the sender does not benefit from having commitment

power. Our findings offer insights into the interchangeability of verifiability and

commitment in applied settings.
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1. Introduction

Suppose that a sender is privately informed about the state of the world and would like

to convince a receiver to take a particular action. The sender does not have commitment

power, but his messages are verifiable statements about the state of the world. What

are the possible outcomes of this interaction?

Persuasion with verifiable information plays an essential role in many economic

settings, including courtrooms, electoral campaigns, product advertising, financial dis-

closure, and job market signaling. For example, in a courtroom, a prosecutor tries to

persuade a judge to convict a defendant by selectively presenting inculpatory evidence.

In an electoral campaign, a politician carefully chooses which campaign promises he

can credibly make in order to win over voters. In advertising, a firm convinces con-

sumers to purchase its product by highlighting only specific product characteristics. In

finance, a CEO divulges only certain financial statements and indicators to board mem-

bers to obtain higher compensation. In a labor market, a job candidate lists specific

certifications in order to make her application more attractive to an employer.

We consider the following model of persuasion with verifiable information. First,

the sender (S, he/him) learns the state of the world. Second, the sender chooses a

message, which is a verifiable statement about the state of the world, and sends it to

the receiver (R, she/her). Verifiability means that any feasible message must contain

the truth (the true state of the world), but not necessarily the whole truth (it may

contain other states). Upon observing the message, R takes an action from a finite set.

S’s preferences are state-independent and are strictly increasing in R’s action, while

R’s preferences depend on both her action and the state. We focus on the outcomes

of this interaction, which we define as mappings from the state space to a distribution

over R’s actions.

Our first set of results describes equilibrium outcomes, which are induced by the

(perfect Bayesian) equilibria of the game. Our first main result (Theorem 1) states

that every equilibrium outcome must be incentive-compatible (for S, IC for short)

and obedient (for R). The IC constraint requires that S receives at least his complete

information payoff in each state; otherwise, he would have a profitable deviation toward

fully revealing the state. R’s obedience constraint states that if she takes some action

with a positive probability in some states, then that action must maximize her expected

utility. The second part of Theorem 1 adds that if an outcome is deterministic, IC, and

obedient, then it is an equilibrium outcome. A deterministic outcome is one in which

R takes some action with probability one in every state. Although not all equilibrium

outcomes are deterministic, we show in Lemma 1 that all equilibria wherein R does not

mix (e.g. if R uses a predetermined tie-breaking rule) induce deterministic outcomes.
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In this model, the sender does not have commitment power: he learns the state

and then chooses a verifiable message that maximizes his expected payoff in that state.

Our second goal is to understand when S can achieve the same payoff in equilibrium

as he does in information design (e.g., Kamenica and Gentzkow, 2011). In information

design, S commits to a disclosure strategy ahead of learning the state; a commitment

outcome is an obedient outcome that maximizes the sender’s ex-ante utility. Our second

main result (Theorem 2) states that the commitment payoff is achievable in equilibrium

if and only if there exists a deterministic and IC commitment outcome.

In general, commitment outcomes that are IC and non-deterministic cannot be

induced by an equilibrium because R breaks ties in favor of S in a commitment outcome.

This implies that a commitment outcome must be deterministic in order to be an

equilibrium outcome. We argue; however, that this is not a substantive concern. When

the state space is rich, a deterministic commitment outcome exists (Proposition 2).

When the state space is finite, we show that modifying our game to one in which the

set of available verifiable messages is determined stochastically allows us to implement

any IC (but not necessarily deterministic) commitment outcome (see Section 5).

The second difference between equilibrium and commitment outcomes is that S

does not face any incentive-compatibility concerns when he has commitment power.

Therefore, our second main result essentially states that a (deterministic) commitment

outcome is an equilibrium outcome if and only if S obtains at least his complete infor-

mation payoff in every state. Additionally, we show that when R chooses between two

actions, an IC commitment outcome always exists (Proposition 1). In those settings,

which are common in applications, a (deterministic) commitment outcome is always an

equilibrium outcome.1

Related Literature

The literature on persuasion with verifiable information is pioneered by Milgrom (1981)

and Grossman (1981); this paper has the same mapping from state to available messages

as Milgrom and Roberts (1986), except in Section 5.2 In all these papers, unraveling

is the unique equilibrium outcome, because S’s preferences are strictly monotone in

R’s action (e.g. he is maximizing quantity sold) and R’s action space is rich (e.g. she

is choosing a perfectly divisible quantity to buy). The unraveling argument goes as

1For example, pharmaceutical companies persuade the Food and Drug Administration to approve their
drug (Kolotilin, 2015); schools persuade employers to hire their graduates (Ostrovsky and Schwarz,
2010; Boleslavsky and Cotton, 2015); politicians persuade voters (Alonso and Câmara, 2016; Bardhi
and Guo, 2018); and governments persuade citizens (Gehlbach and Sonin, 2014).

2The verifiable information literature is reviewed by Milgrom (2008) and Dranove and Jin (2010).
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follows: the sender who is privately informed about the quality of his product always

wants to separate himself from all lower-quality senders, as that convinces R to purchase

a strictly higher quantity of the product. We argue that if R’s action space is finite,

then unraveling is not the only equilibrium outcome.Our argument is easiest to see

when R’s action space is binary, such as when she is choosing between buying and not

buying. Then, the high-quality senders may not mind pooling with some lower-quality

senders, as they are already getting the highest possible payoff.

A few recent papers also characterize the equilibrium set (or the set of equilibrium

payoffs of the sender) and assess the value of commitment in various models of com-

munication with verifiable information. In our companion paper, Zhang and Titova

(2025), we impose considerably more structure on the receiver’s preferences, which

yields sharper results. Gieczewski and Titova (2024) consider a game with a gener-

alized message mapping and focus on coalition-proof equilibria. In Ali, Kleiner, and

Zhang (2024), the sender could have state-dependent preferences, but they focus on

settings where IC is not a concern.

While we study the conditions under which the sender does not benefit from com-

mitment power, there is growing literature studying how much the receiver gains from

commitment power by comparing equilibrium outcomes to the optimal mechanism out-

comes for sender-receiver games with verifiable information. When the sender’s pref-

erences are state-independent, Glazer and Rubinstein (2004, 2006) and Sher (2011)

find that the receiver does not need commitment to reach the optimal mechanism out-

come. Hart, Kremer, and Perry (2017) establish the conditions for the equivalence of

the equilibrium and optimal mechanism outcomes. Ben-Porath, Dekel, and Lipman

(2019) confirm that the receiver does not need commitment even if the sender has

state-dependent preferences.

Some other papers also compare equilibrium outcomes in one-shot communica-

tion games with commitment outcomes, but for different communication protocols.

Most closely related ones are Chakraborty and Harbaugh (2010), Lipnowski and Ravid

(2020), and Lipnowski (2020)’s analyses of cheap talk games, and a few papers in the

informed information design literature. In cheap talk games, the sender’s messages

need not be verifiable: in every state, the sender has access to the same (sufficiently

rich) set of messages. The verifiability requirement faced by our sender can significantly

impact equilibrium outcomes.3

3It may both help and hurt the sender, depending on the preferences of the players. In fact, the entire
equilibrium set of the verifiable information game may be ex-ante better for the sender than the entire
set of cheap talk equilibria, and vice versa.
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Our paper is also related to the informed information design (IID henceforth)

literature, pioneered by Perez-Richet (2014). There, the sender chooses an arbitrary

Blackwell experiment like in the information design literature, except he observes the

state of the world before making the choice. As Koessler and Skreta (2023) (KS hence-

forth) point out, in certain informed information design settings, “PBE has very little

predictive power ... because off-path beliefs can be chosen in a way that completely

cancels out the information revealed by off-path experiments.” To address this issue,

KS focus on interim optimal (IO) outcomes that place a restriction on the receiver’s

off-path beliefs: any such belief must assign positive probability only to states in which

the sender strictly benefits from the deviation. As pointed out by Perez-Richet (2014),

our persuasion game with verifiable information can be interpreted as a constrained IID

problem: S observes the state of the world, then chooses a verifiable message (rather

than an arbitrary experiment). Our approach is thus complementary to KS: our con-

straint on the set of feasible experiments already restricts the set of feasible off-path

beliefs (when R hears a message, she knows it cannot have come from a state where

that message is not available), and we choose not to restrict it any further.4 Our

characterization of equilibrium outcomes happens to be directly comparable to KS’s

characterization IO outcomes. We discuss the differences and similarities throughout

the paper.

2. Model

We study a game of persuasion with verifiable information between a sender (S, he/him)

and a receiver (R, she/her). Below we describe the timing of the game along with the

assumptions:5

1. S observes the state of the world θ ∈ Θ.

The state space Θ is either finite (Θ = {1, . . . , N}, N ≥ 2) or rich (Θ is a convex

and compact subset of Rn). The state of the world is drawn from a common prior

µ0 ∈ ∆(Θ) with supp µ0 = Θ. If the state space is rich, we further assume that

the prior is atomless.

2. S sends message m ∈ M to the receiver, where M is the collection of nonempty

4Zapechelnyuk (2023), like us, does not restrict off-path beliefs; instead, he assumes that the sender’s
experiments are never fully revealing, and finds that every Pareto undominated commitment outcome
can be implemented by an informed designer.

5For a topological space Y , let ∆(Y ) denote the set of Borel probability measures on Y . For γ ∈ ∆Y ,
let supp γ denote the support of γ. We say that γ ∈ ∆Y is degenerate if supp γ is a singleton, and
non-degenerate otherwise.
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Borel subsets of Θ. Each message is a subset of the state space and we can

interpret it as a statement about the state of the world. The sender’s messages

are verifiable:6

Definition 1. Message m ∈M is verifiable in state θ ∈ Θ if θ ∈ m.

3. R observes the message (but not the state) and takes action from a finite set J

with |J | ≥ 2.

4. Game ends, payoffs are realized.

S’s payoff v : J → R depends only on R’s action. We assume that S prefers higher

actions, i.e. v(j) is strictly increasing in j ∈ J .

R’s preferences are described by a bounded utility function u : J × Θ → R.
We define R’s complete information action-j set as Aj := {θ ∈ Θ | u(j, θ) ≥
u(j′, θ) for all j′ ∈ J ∖ {j}} to include all the states of the world in which she

prefers to take action j under complete information.

We consider perfect Bayesian equilibria (henceforth equilibria) of this game.

Firstly, S’s strategy is a function σ : Θ → ∆0M , where ∆0M is the set of proba-

bility measures on M with a finite support.7 Secondly, R’s strategy is a function

τ :M → ∆J . Finally, R’s belief system is q :M → ∆Θ describes R’s beliefs about the

state after any observed message.

Definition 2. A triple (σ, τ, q) is an equilibrium if

(i) For all θ ∈ Θ, σ(· | θ) is supported on argmax
{m∈M | θ∈m}

∑
j∈J

v(j) τ(j | m);

(ii) For all m ∈M , τ(· | m) is supported on argmax
j∈J

∫
Θ

u(j, θ) dq(θ | m);

(iii) q is obtained from µ0, given σ, using Bayes rule;8

(iv) For all m ∈M , q(· | m) ∈ ∆m.

In words, in equilibrium, (i) S chooses verifiable messages that maximize his ex-

pected utility in every state θ ∈ Θ; (ii) R maximizes her expected utility given her

6We borrow from Milgrom and Roberts (1986) the definition of a verifiable message as a subset of the
state space that includes the realized state. This method satisfies normality of evidence (Bull and
Watson, 2007), which makes it consistent with both major ways of modeling hard evidence in the
literature.

7That is, we assume that S mixes between finitely many messages. This assumption imposes no
restriction when Θ is finite. When Θ is rich, it guarantees that σ(· | θ) is well-defined and does not
affect the set of achievable equilibrium payoffs.

8That is, q is a regular conditional probability system.
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posterior belief; (iii) R uses Bayes’ rule to update her beliefs whenever possible; and

(iv) R takes into account that messages are verifiable on and off the path.

To analyze the model, we use the following approach. Let Ψ be the set of all

Borel measurable functions from Θ to ∆J . We refer to any α ∈ Ψ as an outcome;

it specifies, for each state θ ∈ Θ, the probability α(j | θ) that R takes action j ∈ J .

Given a pair of strategies (σ, τ) of S and R, we let Mj(σ, τ) := {m ∈ M | m ∈
supp σ(· | θ) for some θ ∈ Θ and τ(j | m) > 0} be the set of messages sent with a

positive probability after which R takes action j ∈ J with a positive probability. We

say that α ∈ Ψ is an equilibrium outcome if there exists an equilibrium (σ, τ, q) that

induces it, meaning that α(j | θ) =
∑

m∈Mj(σ,τ)

τ(j | m)σ(m | θ) for all j ∈ J and θ ∈ Θ.

Of particular interest are outcomes in which R takes a particular action in every

state. We say that an outcome α ∈ Ψ is deterministic if α(· | θ) is degenerate for each

θ ∈ Θ. For a deterministic outcome α, we refer to the collection of sets {Wj}j∈J , where
Wj := {θ ∈ Θ | α(j | θ) = 1}, as the outcome partition (into subsets Wj of the state

space in which R takes action j ∈ J with probability one) of α.

Given an outcome α, we let vα(θ) :=
∑
j∈J

v(j)α(j | θ) be S’s (expected) payoff when

the realized state of the world is θ ∈ Θ and Vα :=
∫
Θ

vα(θ) dµ0(θ) be S’s ex-ante utility.

3. Equilibrium Analysis

We begin by establishing the lower bound on S’s payoff in an equilibrium outcome α.

One thing that S can do in state θ is fully reveal the state by sending message {θ} with

probability one. When R hears message {θ}, she learns that the state is θ and takes an

action that is a best response under complete information. Therefore, S’s equilibrium

payoff in state θ is bonded below by v(θ) := min
j∈J s.t. θ∈Aj

v(j). We refer to this condition

as S’s incentive-compatibility constraint.9

vα(θ) ≥ v(θ). (ICθ)

Definition 3. An outcome α is incentive-compatible (IC) if it satisfies (ICθ) for each

state θ ∈ Θ.

9In fact, v(θ) is the lower bound on S’s equilibrium payoff in state θ, meaning that there exists an
equilibrium in which S’s equilibrium payoff is exactly v(θ) for each θ ∈ Θ. In that equilibrium, S fully
reveals every state, R takes the lowest action that is a best response under complete information, and
R’s beliefs are skeptical off-path (we define R’s skeptical beliefs in the proof of Theorem 1).
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In information design, α(j | θ) is interpreted as the probability that S recommends

action j in state θ; R’s best response is to follow that recommendation if∫
Θ

(u(j, θ)− u(j′, θ))α(j | θ) dµ0(θ) ≥ 0, ∀j′ ∈ J ∖ {j}. (obediencej)

Definition 4. An outcome α is obedient if it satisfies (obediencej) for each action

j ∈ J .

Of course, our setting does not allow for action recommendations as S’s message

space is not J . However, we will see shortly that all equilibrium outcomes must be

obedient.

If α is a deterministic outcome with partition {Wj}j∈J , then (ICθ) becomes θ ∈
Wj =⇒ v(j) ≥ v(θ) ⇐⇒ j ≥ min

i∈J s.t. θ∈Ai

i, indicating that the action taken in state

θ must be no lower than R’s worst best response under complete information. The

obedience constraint for action j simplifies to
∫
Wj

(u(j, θ) − u(j′, θ)) dµ0(θ) ≥ 0 for all

j′ ∈ J ∖ {j}.

Our first result confirms that every equilibrium outcome is incentive-compatible

and obedient. If an outcome is deterministic, then these two properties are necessary

and sufficient for it to be an equilibrium outcome.

Theorem 1.

(a) Every equilibrium outcome is IC and obedient.

(b) If a deterministic outcome is IC and obedient, then it is an equilibrium outcome.

Proof. [Part (a)] Consider an equilibrium (σ, τ, q) with outcome α ∈ Ψ. Observe that

α must be incentive-compatible, or else there exists a state θ in which S has a profitable

deviation to fully revealing the state. Next, we show that α is also obedient. Consider

any action j ∈ J . By the equilibrium condition (ii), we have

for all m ∈Mj(σ, τ) and j
′ ∈ J ∖ {j},

∫
Θ

(u(j, θ)− u(j′, θ)) dq(θ | m) ≥ 0

=⇒
∫
Θ

(u(j, θ)− u(j′, θ))τ(j | m) dq(θ | m) ≥ 0,

where the second inequality follows because τ(j | m) > 0 for all m ∈ Mj(σ, τ). Using

7



the Bayes rule, the above inequality implies that

for all j′ ∈ J ∖ {j},
∫
Θ

(u(j, θ)− u(j′, θ))
∑

m∈Mj(σ,τ)

τ(j | m)σ(m | θ) dµ0(θ) ≥ 0,

=⇒
∫
Θ

(u(j, θ)− u(j′, θ))α(j | θ) dµ0(θ) ≥ 0,

where the last inequality is (obediencej). Since the choice of j is arbitrary, α is obedient.

[Part (b)] Consider a deterministic outcome α that is IC and obedient and denote

its outcome partition by {Wj}j∈J . We construct an equilibrium (σ, τ, q) that induces

α. Let S’s strategy be σ(m | θ) = 1(m = Wj and θ ∈ Wj) be to reveal which element

of the outcome partition the realized state belongs to. When R receives an on-path

message Wj, she learns that θ ∈ Wj and nothing else; by (obediencej), playing action

j is a best response, so we let τ(j | Wj) = 1 for all j ∈ J . For off-path messages,

let R be “skeptical” and assume that any unexpected message comes from the state

in which S benefits from such deviation the most. Formally, for all m /∈ {Wj}j∈J , let
q(· | m) ∈ ∆(m∩Aj), where j ∈ J is the lowest action i ∈ J such that the set m∩Ai is
non-empty. Then, playing action j with probability one is a best response to message

m, so we let τ(j | m) = 1.

We now show that S has no profitable deviations using the fact that {Wj}j∈J is a

partition of the state space. Consider a state θ ∈ Θ, which is in Wj for some action

j ∈ J . S cannot send any other on path message because θ ∈ Wj implies θ /∈ Wi for

any i ̸= j, so Wi is not a verifiable message in state θ. If S deviates to an off-path

(verifiable) message m /∈ {Wj}j∈J , then S’s payoff is v(j) ≤ v(θ), and this deviation is

unprofitable by (ICθ). Therefore, (σ, τ, q) is an equilibrium that induces α.

Part (a) of Theorem 1 confirms that every equilibrium outcome must be obedient.

To see why, consider all on-path messages after which R plays j with a positive prob-

ability. If the same action is a best response after all these messages, then she should

choose the same action without knowing which of these messages was sent. Since R

chooses the same optimal action after all these messages, we can “bundle” them into

a single “recommendation” to take action j. Part (b) of Theorem 1 characterizes the

set of deterministic equilibrium outcomes, and its proof suggests a simple way of im-

plementing them in a pure-strategy equilibrium with at most J on-path messages that

essentially serve as action recommendations. Specifically, if {Wj}j∈J is an outcome

partition, then Wj is both the set of states in which R plays action j and the on-

path message that “recommends” that R plays j in the equilibrium that induces this

outcome.
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While Theorem 1 characterizes the set of deterministic equilibrium outcomes, it

does not provide a characterization of the entire set of equilibrium outcomes. In general,

an IC and obedient non-deterministic outcome may or may not be an equilibrium

outcome. Consider the seminal example from Kamenica and Gentzkow (2011).

Example 1. S is a prosecutor and R is a judge. The state of the world is binary: Θ =

{1, 2} = {innocent, guilty}, R’s action space is binary: J = {1, 2} = {acquit, convict},
and the prior is µ0(innocent) = 0.7. S’s preferences are v(acquit) = 0 and v(convict) =

1, while R wants to “match the state”: u(acquit, innocent) = u(convict, guilty) = 1,

and u(acquit, guilty) = u(convict, innocent) = 0. Consider an outcome α∗ such that

α∗(convict | guilty) = 1 and α∗(convict | innocent) = 3/7. It is straightforward to

verify that α∗ is both IC and obedient. However, α∗ is not an equilibrium outcome:

when θ = innocent, R convicts with probability 3/7 and acquits with probability 4/7.

Since S strictly prefers conviction, he has a profitable deviation to sending the message

after which R convicts when θ = innocent.

Example 1 illustrates that (IC and obedient) outcomes in which S receives different

payoffs in the same state cannot be equilibrium outcomes. Once the state is realized, S’s

message space is fixed and known. Thus, if S mixes between multiple messages in the

same state, he must be receiving the same payoff following these messages. In Section 5,

we show that once S’s set of available messages is rich and determined stochastically, IC

and obedience become necessary and sufficient for equilibrium implementation, because

requirement that S’s payoff is constant in state θ is lifted.

Of course, if S does receive the same payoff in state θ, then an IC, obedient and

non-deterministic outcome could be an equilibrium outcome. However, in any such

equilibrium, R must be playing a mixed strategy in every such equilibrium:

Lemma 1. Suppose that α is a non-deterministic outcome induced by an equilibrium

(σ, τ, q). Then in each θ ∈ Θ such that α(· | θ) is non-degenerate, R is playing a mixed

strategy (that is, τ(· | m) is non-degenerate) for some m ∈ supp σ(· | θ).

Proof. Consider a state θ ∈ Θ such that α(· | θ) is non-degenerate. By contra-

diction, suppose that τ(· | m) is degenerate for all m ∈ supp σ(· | θ). By the

equilibrium condition (i), for any pair of messages m,m′ ∈ supp σ(· | θ), we have∑
j∈J

v(j)τ(j | m) =
∑
j∈J

v(j)τ(j | m′), implying that there exists an action j∗ ∈ J

such that τ(j∗ | m) = τ(j∗ | m′) = 1. In words, if R is not mixing, then ev-

ery message sent by S in state θ convinces R to take the same action. Therefore,

α(j∗ | θ) =
∑

m∈Mj(σ,τ)

τ(j∗ | m)σ(m | θ) = 1, a contradiction.
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The converse of Lemma 1 also tells us that if R is not mixing in an equilibrium

(e.g. if she uses a predetermined tie-breaking rule), then the outcome is deterministic.

Lemma 1 will play an important role later in establishing our next main result.

Theorem 1 characterizes all pure-strategy equilibria of the game, since those equi-

libria are deterministic. Koessler and Renault (2012) find that IC and obedience are

necessary and sufficient for a pure strategy outcome to be an equilibrium outcome in a

setting where S has state-independent preferences, sends verifiable messages and sets a

price, and R chooses between two actions. Theorem 1 highlights that their result (1)

extends to more than two actions of R and (2) is not driven by S’s extra choice variable

(price).10

Theorem 1 also highlights the differences between our approach and that of

Koessler and Skreta (2023). Their characterization (Proposition 2) states that an

outcome is IO if and only if it is obedient and IOC, where IOC essentially requires

that S does not wish to deviate to any experiment (which is just an outcome) that

pools any fraction of states. Naturally, the first difference (they have IOC and we

have IC) is due to our different approaches: they restrict the set of off-path beliefs

whereas we restrict the set of feasible experiments. Interestingly, KS also show that

IC implies IOC if S’s value function is quasiconvex in R’s belief (Proposition 3) or

when R chooses between two actions (Lemma B.2). The second difference is that IOC

and obedience are necessary and sufficient for an outcome to be an IO outcome, while

for us IC and obedience are not sufficient. Since in our model the sender only chooses

messages, an additional restriction applies: S may mix between different messages only

when they yield the same expected payoffs — a constraint absent in (unconstrained)

informed information design. For this reason, some IO outcomes (e.g., one from

Example 1) are not equilibrium outcomes in our game. This difference washes away

once we replace our assumption that the set of available messages is fixed and known

(which we borrowed from Milgrom and Roberts, 1986) with that the message space is

determined stochastically (see Section 5).

4. Value of Commitment

In this section, we ask: when is a commitment outcome (a solution to the information

design problem) also an equilibrium outcome? In the information design problem, stage

1 of the game (wherein the sender learns the state) is removed, and stage 2 of the game

(wherein the sender chooses a verifiable message) is replaced by S committing to an

10Except, as the authors point out, the price choice ensures that R’s best response is a pure strategy,
which implies all equilibria are deterministic.
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experiment that sends signals depending on state realizations.11 Importantly, S who

has commitment power no longer faces an incentive-compatibility constraint: he need

not maximize his utility state-by-state, and his signals need not be verifiable.

We follow Kamenica and Gentzkow (2011) and focus on straightforward signals

that R interprets as action recommendations. Therefore, an (optimal) commitment

outcome ψ ∈ Ψ solves

max
ψ∈Ψ

Vψ subject to, for each action j ∈ J,∫
Θ

(u(j, θ)− u(j′, θ))ψ(j | θ) dµ0(θ) ≥ 0 for all j′ ∈ J ∖ {j}.
(CO)

Simply put, a commitment outcome is an outcome (i.e. an element of Ψ) that max-

imizes S’s ex-ante utility and is obedient, since the constraints in problem (CO) are

the obedience constraints. We call the value of problem (CO) the commitment payoff.

Our second result establishes that a commitment outcome has to be deterministic and

incentive-compatible in order to be an equilibrium outcome.

Theorem 2. Consider a commitment outcome ψ ∈ Ψ.

(a) If ψ is IC and deterministic, then it is an equilibrium outcome.

(b) If ψ is an equilibrium outcome, then it is IC and deterministic µ0-almost every-

where.

Proof. [Part (a)] Recall that every commitment outcome is obedient. Therefore, if ψ

is IC and deterministic, it is an equilibrium outcome by Part (b) of Theorem 1.

[Part (b)] Suppose a commitment outcome ψ is an equilibrium outcome, meaning

that there exists an equilibrium (σ, τ, q) that induces it. By Theorem 1, ψ is incentive-

compatible. In what follows, we show that ψ is deterministic µ0-almost everywhere.

Let T := {θ ∈ Θ | ψ(· | θ) is non-degenerate} be the set of states in which R plays

multiple actions and suppose, by contradiction, that µ0(T ) > 0. By Lemma 1, for each

θ ∈ T , there exists a message m ∈ supp σ(· | θ) such that τ(· | m) is non-degenerate.

Let M̃ := {m ∈ M | τ(· | m) is non-degenerate} be the set of messages after which R

plays a mixed strategy. Also, let τ̃(j∗ | m) := 1(j∗ = max
j∈supp τ(· | m)

j) for all m ∈ M be

the strategy of R that breaks all ties in τ in favor of S. Define the outcome from the

strategy profile (σ, τ̃) by ψ̃.

11Specifically, an experiment (S, χ) consists of a compact metrizable space S of signals and a Borel
measurable function χ : Θ → ∆S. When the realized state is θ ∈ Θ, R sees a signal s ∈ S drawn from
χ(· | θ).
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We now arrive at a contradiction by showing that ψ̃ is an obedient outcome such

that Vψ̃ > Vψ (which means that ψ is not a commitment outcome). Indeed, we have

vψ̃(θ) > vψ(θ) for all θ ∈ T (since σ(m | θ) > 0 for some m ∈ M̃), while vψ̃(θ) = vψ(θ)

for all θ /∈ T . Therefore, Vψ̃ − Vψ =
∫
T

(vψ̃(θ) − vψ(θ)) dµ0(θ) > 0 since µ0(T ) > 0. To

show that ψ̃ is obedient, we can write down equilibrium condition (ii) for the equilibrium

(σ, τ, q) and follow the steps of the proof of Theorem 1(a), replacing τ with τ̃ and noting

that Mj(σ, τ̃) ⊆Mj(σ, τ).

The non-trivial part of Theorem 2 involves proving that if ψ is an equilibrium and

a commitment outcome, then it is deterministic almost everywhere, which is equivalent

to showing that an equilibrium outcome ψ that is not deterministic a.e. cannot be

a commitment outcome. Indeed, by Lemma 1, in the equilibrium that induces ψ, R

must be playing a mixed strategy after some on-path messages coming from a positive

measure of states. However, breaking those ties in favor of the S-preferred action strictly

increases S’s ex-ante utility, which means that ψ is not a commitment outcome.

In many relevant settings, R chooses between two actions. In this case, the analysis

vastly simplifies. From R’s point of view, there are “bad” states θ ∈ A1, where R

prefers to take the low action 1, and “good” states θ /∈ A1, where R prefers to take

the high action 2. The highest payoff that S can achieve is v(2) (when R takes action

2 with probability one), and the lowest is v(1). To state that an outcome ψ ∈ Ψ is

incentive-compatible, it suffices to show that θ /∈ A1 implies that vψ(θ) = v(2)ψ(2 | θ)+
v(1)ψ(1 | θ) ≥ v(2), which is equivalent to ψ(2 | θ) = 1; there are no IC conditions for

θ ∈ A1 since v(1) is already the lowest payoff in the game. In words, an outcome is

IC if and only if R plays action 2 with probability one in all states where action 2 is

the unique best response under complete information. The following result establishes

existence of an incentive-compatible commitment outcome when R chooses between

two actions.

Proposition 1. If |J | = 2, then there exists an IC commitment outcome.

Proof. Since Θ is a compact subset of Rn, the existence of a commitment outcome

follows from Proposition 3 in the Online Appendix of Kamenica and Gentzkow (2011)

and Theorem 1 in Terstiege and Wasser (2023). Let ψ ∈ Ψ be a commitment outcome

and let ψ̃ ∈ Ψ be an outcome such that ψ̃(· | θ) = ψ(· | θ) for all θ /∈ A2 and

ψ̃(2 | θ) = 1 for all θ ∈ A2. By construction, ψ̃ is incentive-compatible and weakly
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increases S’s ex-ante utility over ψ. Next, let δ(θ) := u(2, θ)−u(1, θ) and observe that∫
Θ

δ(θ)ψ̃(2 | θ) dµ0(θ) =

∫
Θ

δ(θ)ψ(2 | θ) dµ0(θ) +

∫
A2

(1− ψ(2 | θ)) dµ0(θ),

where the last term is non-negative, which means that obedience of ψ implies obedience

of ψ̃. Therefore, ψ̃ is also a commitment outcome.

From the existing literature, we know even more about commitment outcomes

when |J | = 2 and Θ is finite. Alonso and Câmara (2016) show that every commitment

outcome is characterized by a cutoff state θ∗, and all states such that δ(θ) > δ(θ∗) are

pooled together to recommend action 2. In particular, all the good states θ /∈ A1 are

recommending action 2, which implies that every commitment outcome is incentive-

compatible (see also Lemma B.2 in Koessler and Skreta, 2023). Our Proposition 1 also

deals with the case when Θ is rich, in which case there exist commitment outcomes

that are not IC (although they are IC µ0-almost everywhere), and its proof describes

how to make an existing commitment outcome incentive-compatible.

Theorem 2 is useful for checking if an already-found commitment outcome ψ is an

equilibrium outcome. The answer is affirmative if and only if ψ is deterministic a.e.

and incentive-compatible. While checking for incentive-compatibility can be straight-

forward, there is generally no guarantee that a deterministic commitment outcome

exists. In the remainder of the section, we consider the cases when Θ is rich and finite

separately. We show that when Θ is rich, there always exists a deterministic commit-

ment outcome; if, additionally, R chooses between two actions, the (ICθ) constraints

are satisfied automatically, and therefore the commitment payoff is always achieved in

an equilibrium. When Θ is finite, we obtain an approximation result.

4.1. Rich State Space

When the state space Θ is rich, i.e., Θ is a convex and compact subset of Rn with

the prior µ0 being atomless, the existence of a deterministic commitment outcome is

guaranteed.

Proposition 2. If Θ is rich, then a deterministic commitment outcome exists. Fur-

thermore, a deterministic commitment outcome is an equilibrium outcome if and only

if it is IC.

Proof. The existence of a commitment outcome ψ follows from the same argument as

in the proof of Proposition 1. For every j ∈ J , ψ(j | ·) : Θ → [0, 1] is Borel measurable,
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and
∑

j∈J ψ(j | θ) = 1 for all θ ∈ Θ. For each j ∈ J , define µj by dµj := u(j, ·) dµ0.

Because µ0 is a finite and atomless positive measure, and u is bounded, for all j ∈ J , µj
is a finite and atomless signed measure. Since J is finite, by Theorem 2.1 in Dvoretzky,

Wald, and Wolfowitz (1951), there exist Borel measurable functions ψ̃(j | ·) : Θ →
{0, 1}, j ∈ J with

∑
j∈J ψ̃(j | ·) = 1, such that

∫
Θ
ψ̃(j | θ) dµ0 =

∫
Θ
ψ(j | θ) dµ0, and∫

Θ
ψ̃(j | θ) dµj =

∫
Θ
ψ(j | θ) dµj for all j ∈ J . The second set of equalities implies that

ψ̃ is obedient since ψ is, and the first equality implies

Vψ̃ =

∫
Θ

∑
j∈J

v(j)ψ̃(j | θ) dµ0 =

∫
Θ

∑
j∈J

v(j)ψ(j | θ) dµ0 = Vψ.

Therefore, ψ̃ is a deterministic commitment outcome. The second part follows from

Theorem 2.

Checking if a deterministic commitment outcome with partition {Wj}j∈J is

incentive-compatible (and is thus an equilibrium outcome) is straightforward and

requires checking that θ ∈ Wj implies that v(j) ≥ v(θ) for all θ ∈ Θ. Consider the

following example from Gentzkow and Kamenica (2016).

Example 2. Suppose that R has three actions, J = {1, 2, 3} and the prior is uniform

on Θ = [0, 1]. S’s payoffs are given by v(1) = 0, v(2) = 1, and v(3) = 3. R’s

preferences depend only on the posterior mean and, given belief µ ∈ ∆Θ, action 1 is

optimal if and only if Eµ[θ] ≥ 1/3, action 2 — if and only if Eµ[θ] ∈ [1/3, 2/3], action

3 — if and only if Eµ[θ] ≥ 2/3. Therefore, R’s complete-information actions sets are

A1 = [0, 1/3], A2 = [1/3, 2/3], and A3 = [2/3, 1]. Gentzkow and Kamenica (2016) identify a

deterministic commitment outcome ψ with an outcome partition W 1 = [0, 8/48), W 2 =

(11/48, 21/48), and W 3 = [8/48, 11/48] ∪ [21/48, 1]. This outcome is incentive-compatible,

which we illustrate in Figure 1. Since ψ is a deterministic and IC commitment outcome,

it is an equilibrium outcome by Proposition 2.

In the special case where R chooses between two actions, S always achieves his

commitment payoff in an equilibrium.

Proposition 3. If Θ is rich and |J | = 2, then there exists a commitment outcome

that is an equilibrium outcome.

Proof. By Proposition 2, there exists a deterministic commitment outcome ψ. We can

then use the same argument as in the proof of Proposition 1 to find a deterministic com-

mitment outcome ψ̃ that is incentive-compatible. By Theorem 2, ψ̃ is an equilibrium

outcome.
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(c) ψ is IC since
vψ(θ) ≥ v(θ) for all θ ∈ [0, 1].

Figure 1. Commitment outcome ψ is incentive-compatible since S receives at least
his complete information payoff in every state of the world.

4.2. Finite State Space

When the state space is finite, i.e., Θ = {1, . . . , N}, a deterministic commitment out-

come often does not exist. For example, in Example 1, the unique commitment outcome

is not deterministic. Therefore, S may not be able to achieve the commitment payoff

in equilibrium.

However, we can show that when the state space is sufficiently rich (in the sense

that µ0(θ) is sufficiently small for all θ ∈ Θ), then S’s equilibrium payoff can get

arbitrarily close to his commitment payoff. To make a clean argument, we adopt the

assumptions of Alonso and Câmara (2016): R has a binary action and

θ′ ̸= θ′′ =⇒ δ(θ′) ̸= δ(θ′′), (RU)

where δ(θ) = u(2, θ)− u(1, θ) for all θ ∈ Θ.

Proposition 4. Suppose that Θ is finite, |J | = 2, (RU) holds, and S’s payoffs are

normalized to v(2) = 1 and v(1) = 0.12 Let V ∗ be S’s commitment payoff. Then, for

every ε > 0, there exists γ > 0 such that µ0(θ) < γ for all θ ∈ Θ implies that there

exists an equilibrium outcome α such that |V ∗ − Vα| < ε.

Proof. If A2 = Θ (which means δ(θ) ≥ 0 for all θ ∈ Θ) , let α(2 | θ) = 1 for all

θ ∈ Θ so that Vα = V ∗. Therefore, we assume for the remainder of the proof that

A2 is a proper subset of Θ. Since (RU) holds, we can use Proposition 2 in Alonso

and Câmara (2016) to find a cutoff state θ∗ ∈ Θ such that δ(θ∗) < 0 and, for every

12The normalization is adopted without loss of generality, and although Condition (RU) is assumed to
simplify the proof, the result holds even without it.
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commitment outcome ψ, we have ψ(2 | θ) = 1 (ψ(1 | θ) = 1) for all θ ∈ Θ such

that δ(θ) > δ(θ∗) (δ(θ) < δ(θ∗)). Next, consider a deterministic outcome α with

partition {W1,W2} such that W2 = {θ ∈ Θ | ψ(2 | θ) = 1} and W1 = Θ ∖W2. It is

easy to see that α is IC and obedient, and therefore it is an equilibrium outcome by

Theorem 1. The difference in ex-ante payoffs of S is zero if ψ(2 | θ∗) = 1 and otherwise

is V ∗ − Vα = ψ(2 | θ∗)µ0(θ
∗) < µ0(θ

∗) < γ := ε.

Therefore, assuming R has a binary action, if the finite state space Θ has sufficiently

many elements and the prior probability of each state is sufficiently small, S can get

arbitrarily close to his commitment payoff in an equilibrium.

5. A Model with Stochastic Messages

In the main model, IC and obedience were not sufficient for an outcome to be induced

by an equilibrium: there exist non-deterministic but IC and obedient outcomes in which

S effectively recommends multiple actions and thus expects different payoffs in the same

state, which violates equilibrium condition (i). The reason why (i) is violated is that

the mapping E : Θ → M , which determines the set of messages available in state θ,

is deterministic. This assumption is standard in verifiable disclosure and cheap talk

literature.13 In some cases; however, it is reasonable to assume that that mapping is

stochastic: for example, there may be different labels for the same state, and S can

make statements about the label rather than the state. In this section, we introduce

a game with a stochastic message mapping (SMM game henceforth) and show that IC

and obedience are sufficient for an outcome to be an equilibrium outcome.

The SMM game has the same timeline and players’ objectives as our main model;

we modify stage 2, wherein S communicates with R, only. Specifically, we assume that

along with the state of the world θ ∈ Θ (which we assume here is finite), S also observes

a label x ∈ [0, 1], which is payoff-irrelevant to both S and R. That label x is drawn from

U(Xθ), where {Xθ}θ∈Θ is a partition of the unit interval such that λ(Xθ) = µ0(θ), where

λ is the Lebesgue measure.14 Then, S sends message m ∈ B([0, 1]) =: M̂ such that x ∈

13For example, in Grossman (1981), Milgrom (1981), and Milgrom and Roberts (1986), E(θ) includes
subsets of Θ that contain θ. In Dye (1985), E(θ) is binary, S can reveal θ or say nothing. In Hart,
Kremer, and Perry, 2017 and Ben-Porath, Dekel, and Lipman, 2019), E(θ) is modeled as a partial
order on Θ. In cheap talk, E(θ) is the same for all θ ∈ Θ.

14For example, let t0 := 0, tθ :=
θ∑

θ′=1

µ0(θ
′) for all θ ∈ Θ; also, letXθ = [tθ−1, tθ) for all θ ∈ {1, . . . , N−1}

and tN = [tN−1, 1]. Then, {Xθ}θ∈Θ is a partition of [0, 1] and λ(Xθ) =
θ∑

θ′=1

µ0(θ
′)−

θ−1∑
θ′=1

µ0(θ
′) = µ0(θ).
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m. Thus, the set of messages available to S in state θ is now determined stochastically

(through x). The equilibrium of the SMM game (σ̂, τ̂ , q̂) is defined analogously to the

equilibrium of the main model, except S’s strategy is now also a function of x.

In the SMM game, S’s strategy is a function σ̂ : Θ× [0, 1] → ∆0M̂ , R’s strategy is

τ̂ : M̂ → ∆J and R’s belief system is q̂ : M̂ → ∆Θ.

Definition 5. A triple (σ̂, τ̂ , q̂) is an equilibrium of the SMM game if

(i) For all θ ∈ Θ and x ∈ [0, 1], σ̂(· | θ, x) is supported on argmax
{m∈M̂ | x∈m}

∑
j∈J

v(j) τ̂(j | m);

(ii) For all m ∈ M̂ , τ̂(· | m) is supported on argmax
j∈J

∫
Θ

u(j, θ) dq(θ | m);

(iii) q̂ is obtained from µ0, given σ̂, using Bayes rule.

(iv) For all m ∈ M̂ , q̂(· | m) ∈ ∆{θ ∈ Θ | Xθ ∩m ̸= ∅}.

Since x is payoff-irrelevant, an outcome α ∈ Ψ is defined as before, and α(j | θ) is
the probability that R takes action j ∈ J when the state is θ ∈ Θ. We say that α is

an equilibrium outcome of the SMM game if there exists an equilibrium (σ̂, τ̂ , q̂) that

induces it, i.e., α(j | θ) = 1
µ0(θ)

∫
Xθ

∑
m∈supp σ̂(· | θ,x)

σ̂(m | θ, x)τ̂(j | m) dx.

We obtain a sharp equilibrium characterization for the SMM game.

Theorem 3. Let Θ be finite. Then, α ∈ Ψ is an equilibrium outcome of the SMM

game ⇐⇒ α is IC and obedient.

Proof. (=⇒) is proved exactly the same way as Theorem 1 (a). An equilibrium outcome

must be IC or else S has a profitable deviation to fully revealing x (which also reveals

θ ∈ Θ since x ∈ Xθ). An equilibrium outcome must be obedient by Bayes rule.

(⇐=) Consider an IC and obedient outcome α. For every θ ∈ Θ, let Jθ :=

supp α(· | θ) be the set of actions that R takes with a positive probability when the

realized state is θ. Next, partition Xθ into a set of intervals {Xθ
j }j∈Jθ such that

λ(Xθ
j )

λ(Xθ)
=

α(j | θ). Also, for each action j ∈ J , let Wj :=
⋃
j∈[J ]

Xθ
j ; by construction, {Wj}j∈J is a

partition of [0, 1].

Now, let S’s strategy be σ̂(m | θ, x) = 1(m = Wj and x ∈ Wj). Then, R’s posterior

after an on-path message Wj is q̂(θ | Wj) =
λ(Xθ

j )

λ(Wj)
. Furthermore, since α is obedient,
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for every action j ∈ [J ] such that λ(Wj) > 0, we have∑
θ∈Θ

(
u(j, θ)− u(j′, θ)

)
α(j | θ)µ0(θ) ≥ 0 ⇐⇒

∑
θ∈Θ

(
u(j, θ)− u(j′, θ)

)λ(Xθ
j )

λ(Wj)
≥ 0 ∀j′ ∈ J ∖ {j},

meaning that R prefers to take action j after message Wj, so we let τ̂(j | Wj) = 1. Off

the path, let R be “skeptical” and assume that any unexpected message comes from the

state in which S benefits from such deviation the most. Formally, ∀m /∈ {W1, . . . ,WJ},
let q̂(· | m) ∈ ∆Aj, where j ∈ J is the lowest action such that m∩Xθ ̸= ∅ and θ ∈ Ai.

Then, playing action j is a best response to message m, so we let τ̂(j | m) = 1. Since

α is IC, S does not have profitable deviations by the same argument as in the proof

of Theorem 1. Deviations to on-path messages are not available because {Wj}j∈J is a

partition, while deviations to off-path messages are not profitable since the payoff from

any deviation in state θ is at most v(θ), which is below vα(θ) by the (ICθ) constraint.

Hence, (σ̂, τ̂ , q̂) is an equilibrium of the SMM game.

In contrast to Theorem 1, incentive-compatibility and obedience are necessary and

sufficient for an outcome to be an equilibrium outcome of the SMM game. Two prop-

erties of the SMM model ensure that every IC and obedient outcome is an equilibrium

outcome. First, S’s message space depends on x, which means S may receive different

equilibrium payoffs in the same state θ (but for different realizations of x). Secondly,

the message space is “rich,” meaning that for every vector p = (p1, . . . , pN) ∈ [0, 1]N

there exists a message m that is available in state θ ∈ Θ with probability pθ. This

richness allows us to “purify” non-deterministic outcomes — the equilibria that we

construct to implement an IC and obedient outcome is in pure strategies of both S and

R.

Given the sharp equilibrium characterization of the SMM game, we immediately

obtain the following results.

Corollary 1. Let Θ be finite. Then, a commitment outcome is an equilibrium out-

come of the SMM game if and only if it is IC.

Corollary 2. If Θ is finite and |J | = 2, then every commitment outcome is an

equilibrium outcome of the SMM game.

Corollary 1 follows directly from Theorem 3. Corollary 2 follows from Alonso and

Câmara (2016) who show that every commitment outcome is incentive-compatible (see
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also our discussion after Proposition 1) and Theorem 3 that ensures that every such

outcome is an equilibrium outcome.

Here we can see that the set of IO outcomes from Koessler and Skreta (2023) is a

subset of the set of equilibrium outcomes of the SMM game. Furthermore, if S’s value

function is quasiconvex in R’s belief, or when R chooses between two actions, then

these two sets coincide.

6. Conclusion

This paper considers a persuasion game with verifiable information, in which a sender

with transparent motives chooses which verifiable messages to send to a receiver to con-

vince her to take a particular action from a finite set. We show that every equilibrium

outcome must be incentive-compatible for the sender and obedient for the receiver.

These conditions are also sufficient when we focus on equilibria in which the receiver

does not mix or when the sender’s message mapping is stochastic. We also identify

sufficient conditions under which the ex-ante commitment assumption in Bayesian per-

suasion can be replaced by communication with verifiable information. Specifically, if

the sender receives at least his complete information payoff in every state, then that

commitment outcome is an equilibrium outcome of a verifiable disclosure game. If the

receiver chooses between two actions, that condition is automatically satisfied. We

hope these results prove useful in applied settings.

References

Ali, S. Nageeb, Andreas Kleiner, and Kun Zhang (2024), “From Design to Disclosure”,
working paper. (p. 3.)
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